Constitutive Models for Rubber V — Boukamel, Laiarinandrasana, Méo & Verron (eds)
@© 2008 Taylor & Francis Group, London, ISBN 978-0-415-45442-1

Nonlinear viscosity law for rate-dependent response of high damping
rubber: FE implementation and verification

A .R. Bhuiyan
Department of Civil and Environmental Engineering, Saitama University, Japan

AFM.S. Amin
Department of Civil Engineering, Bangladesh University of Engineering and Technology, Bangladesh

. T. Hossain
_ Department of Civil Engineering, Dhaka University of Engineering and Technology, Bangladesh

Y. Okui
Department of Civil and Environmental Engineering, Saitama University, Japan

ABSTRACT: A simple computational strategy for implementation of a finite strain viscohyperelasticity model
n a standard FEM code is discussed. To this end, a recently published evolution law that takes the nonlinear
dependence of viscosity into account is considered. Such a law considers the maximum overstress experienced
in past history and deformation as the internal variables. In order to simulate the stress-response for a particular
boundary value problem, an analytical solution scheme using the Bernoulli’s principle has been applied to derive
the stress expressions. The expressions have been incorporated in a finite element code. Limited numerical trials
show the applicability of the procedure for simulating rate dependent responses obtained from one dimensional
experiments e.g. uniaxial compression or simple shear tests on natural rubber and high damping rubber specimens.

1 INTRODUCTION

1l%as.e- isolation technique is a well-known method for
protecting structures from earthquake induced dam-
ages. Use of vulcanized rubber in constructing base
isolation bearings are being increasingly practiced dur-
ing the last decades. To this end, the rubber industries
in Japan have pioneered the development of specially
vulcanized rubbers with high damping properties,
commonly known as high damping rubber (HDR).
Nevertheless, such a vulcanization procedure not only
induces the damping property but also significantly
enhances other mechanical properties e.g. nonlinearity
in stress responses, strain-rate dependency, hysteresis
etc. of the material itself, The HDR bearing with rein-
forced steel plates supports the structure by restricting
the bulging feature of rubber layers and reduces the
‘inertia force of the structure through the dynamics
of the system (Skinner et al. 1993). Since the devel-
opment of HDR materials and HDR bearings, many
researchers were motivated to study the mechanical
behavior of the material and the bearing system as a
whole including the FE simulation of the full scale
bearings as well. The very initial works described in

The limitations of this approach for solving an arbitrary boundary value problem are also discussed.

Seki et al. (1987), Takayama et al. (1990), Billings
(1993), Kelly (1997), Matsuda (1999), Yoshida et al.
(2004) & Ali and Abdel Gaffar (1995) can be noted. Yet
all these studies had severe limitations towards appre-
ciating the rate-dependency effect that significantly
exists in HDR. To this end, the research group con-
centrating around Saitama University, Japan directed
their extensive efforts to study rate-dependency effect,
experimental characterization, and development of
evolution equations for nonlinear elasticity and viscos-
ity effects and identification of constitutive parameters
through experiments (Amin 2001, Amin et al. 2002,
Wiraguna (2003) & Amin et al. 2006a, b. Through
these successive efforts it was possible to propose
an improved hyperelasticity relation for representing
the rate-independent responses and also to propose
a nonlinear viscosity law based on internal variables
to represent the rate-dependent responses in compres-
sion and shear regimes. Bhuiyan (2004) implemented
the improved hyperelasticity model as proposed in
Wiraguna (2003) in a finite element code (see also
Amin et al. 2006a). There has been shown that all
these models can produce simulation results with
good conformity with the responses obtained from

279



E®

_J\A/\/—H equilibrium

T é_-
{ W overstress
7 E-E®
>
e;(t) e lt)

E

Figure 1. Three-parameter parallel model.

mechanical tests. In this course, the present work
is motivated towards the finite element implemen-
tation of the nonlinear viscosity relation in a finite
element code as an extension to the earlier con-
tributions of this research group. This presentation
discusses the approaches that we followed implement-
ing the nonlinear evolution equation for viscosity ina
finite element code for simulating the one dimensional
experiments.

2 CONSTITUTIVE MODELING

A 3- parameter Maxwell model as shown in Figure 1
is used to model HDR. In Figure 1 the total stress
is decomposed into two parts i.e. rate independent
equilibrium part and rate dependent overstress part.
To model the rate dependency phenomenon of HDR,
the hyperelastic models are required to combine with
rate dependent model. In this work, the improved
hyperelasticity model proposed by Amin et al. (2002)
& Wiraguna (2003) has been used to combine with
rate-dependent model (Huber and Tsakmakis 2000)
in order to determine the total stress-strain relation
of HDR.

In this context, Equation (1) representing the strain
energy density function, W, expressed as a function of
the invariants of deformation tensor of HDR material
considering as an incompressible and isotropic-elastic
material, can be used in the current work.
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where, C, C3, C4, Cs, M and N are material
parameters. The invariants of the deformation ten-
sor can be written in terms of the principal stretches
Ai=1,2,3),
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From Truesdell and Noll (1992), the Cauchy stress
T can be expressed as
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where 1 is the identity tensor, p is the hydrostatic
pressure that can be determined from the boundary
condition and the subscript ‘E’ defines the deviatoric
part of the stress.

From the model structures shown in Figure 1, the
deviatoric part of the Cauchy stress tensor can be writ-
ten as the sum of the equilibrium part T(EE) and the

overstress part T(EOE’:

T (4)
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where B=FF", B, =F.F! and 1,3 and I are the
first and second invariants of the B. the subscript ‘¢’
denotes the quantities related to Fe.

Following the concept of Huber and Tsakmakis

(2000), the rate of left Cauchy-Green deformation
tensor can be expressed as

B, =B.L' +LB, - B, (P, - ) )
n

The ( - ) indicates the material time derivative, 1 i
the material viscosity, Pg is Mandel stress tensor and
L is the velocity gradient expressed as,

L= FF"' (8)

3 EVOLUTION OF NONLINEAR VISCOSITY

Recently, Amin et al. (2006b), following the general

constitutive theory based on Huber and Tsakmakis
(2000), proposed an explicit description of the
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volution equation of nonlinear viscosity by analyz-
ing the experimental data of compression and shear.
Equation (9) represents the constitutive equation of
i viscosity of the power law type (Amin et al. 2006a) in
 general three dimensional form
i

- (o5)|[*
; J::“unun' il .

here ¢, 8, 1, are material parameters to be deter-
ined and ||@|| = /@ - w is the magnitude of a tensor.
he closed form of the evolution equation of the consti-
tive equation of nonlinear viscosity can be obtained

.

]ié;;from Equation (9).
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In equation (9) and (10) the parameter & = (1 MPa)
has been introduced for dimensional reasons (Amin
t al. 2006b).

COMPUTATIONAL STRATEGY

The evolution law [Equation (7)] is a first order dif-
erential equation on B.. The input variable is the

deformation gradient tensor F. The left Cauchr—Green

deformation tensor is straightforward B=FF". Let B,

L1:«: the internal state variable.

- The equation (7) can be rewritten in indicial form as

=B_L." +L.B -isfijc an
Ul

eij i iCeij

-t el -3 s, 3P
and (i, j)  {1,2,3}

d the material parameters such as Cs, C3, C4, M
and N as determined by Amin (2001) are used in this
work for simulation purpose. Expanding the evolution
uation leads to a set of 6 differential equations with
6 unknowns: (B.1, Be22, Besa, Ber2, Bezs, Bei3). Now
the Equation (11) can be formulated as the standard
ordinary differential equation

(12)

and

Qlt)=-2c
n

Table 1. Elasticity and viscosity parameters of HDR.
Cz CJ C4 CS

Response (MPA) (MPA) (MPA) (MPA)
HDR Equilibrium 0.145 1.182 —5.297 4.262

Overstress  0.021 1295 —6.392 5445

fo

M N MPa-s ¢ &

HDR 0.06 0.27 1.63 2.29 1.46

The above equation is of the typical form of Bernoulli’s
equation which is given as,

Y p()-y=Q)-y" (13)

dt
By means of the substitution z = y~"*+! Equation (13)
may be written as,

L 1 1-n)-(0)-2=(1-n)-Q1) @

This is linear equation of the first order.
Now using Equation (15) and recalling y = B.;;, the
solution of Equation (7) becomes

1
L * e‘(‘-ir"Lu}‘ + E -t
B. 1

U}

B.=

GIJ

(15)

Equation (15) will be used to determine the Cauchy
stress and thus implemented in the general purpose
finite element code to simulate the experimental
results along with those obtained using the constitutive
relation.

5 MATERIAL PARAMETERS

Equation (1) includes material parameters (Cz, C3, Cy,
Cs, M and N) to represent the strain energy density
function and Equation (10) includes ¢, 8, 1o to states
the evolutionary equation of nonlinear viscosity func-
tion. Table 1 shows the description of these material
parameters as determined by Amin et al. (2002) &
Wiraguna (2003) for the purpose of the simulation.

6 FINITE ELEMENT SIMULATION

The analytical solution strategy of evolution equa-
tion [Equation (7)] as described in Section 5 is used
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Figure 2. FEM model with geometric bound-
ary (a) 2l6-brick-element for compression test (b)
100-brick-element for shear.

to formulate the FE code for incorporation in a versa-
tile finite element program FEAP (Taylor 2006). A 3D
finite element analysis is carried out using the FE mod-
els as shown in Figure 2(a) and (b). Eight-node brick
element as available in FEAP is used to model the rub-
ber. Both the geometric and material nonlinearities of
rubber layers are considered in the analysis.

7 DISCUSSIONS

The main approach of the current work was to solve the
viscosity induced evolution equation [Equation (7)]
and thereby to implement the same in a general pur-
pose finite element code to simulate the rate dependent
responses (Amin et al 2006b). The experimental results
and constitutive parameters as identified and reported
in Amin et al. (2006a, b) were utilized here for sim-
ulation and comparison purposes. Figure 3(a) and
(b) show the stress patterns obtained for the com-
bined action of compression and shear using the rate
independent-model and rate dependent model, respec-
tively. A logical stress patterns have been observed in
both cases. Figure 4(a) and (b) show the FE simu-
lation results of simple relaxation test in shear and
compression, respectively, where a good conformity
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Figure 3. Stress pattern obtained from FEM simulation
using (a) Rate-independent model (b) Rate-dependent model.
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Figure4. Simulation result of simple relaxation test (a) sim-
ple shear at strain level 1.0 (b) uniform compression at stretch
level 0.5.
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igure 5. FEM simulation results of simple shear (a) 0.5/s
(b) 0.25/s.

th experiments and constitutive relations can be
bserved. Figure 5 shows the simulation results of sim-
le shear at different stretch rates while Figure 5(a)
nd (b) show the simulation of the shear stress-strain
response at 0.5/s and 0.25/s strain rates, respectively.

igure 6 shows the same for uniaxial compression
cases. Although at the higher strain rate the simulation
results as shown in Figure 5(a) have a good conformity
Wwith those of the experiment and constitutive relation
' hip but at lower strain rate it does not so as shown in
Figure 5(b). Figure 6(a) and (b) show the compressive
stress-strain response at 0.88/s and 0.24/s strain rates,
Tespectively. From these figures, it is found to have a
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Figure 6. FEM simulation of compression (a) 0.88/s
(b) 0.24/s.

reasonably good conformity between experiment and
FE simulation. However, at the lower strain rate a better
agreement is well observed.

8 CONCLUSION

In the current work, the performance of the pro-
posed mathematical solution has been justified for
one dimensional experimental result only. The perfor-
mance study of the current solution for general loading
case needs to have more elaborated study as the next
step of the current research work.
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Figure 6. (Continued).

Finally, it can be concluded that the proposed solu-
tion be suitably applied in FEM simulation of the rate
dependent response of HDR.
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