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Abstract

The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is
investigated in compression and shear regimes. In order to describe the viscosity-induced rate-depen-
dent effects, a constitutive model of finite strain viscoelasticity founded on the basis of the multipli-
cative decomposition of the deformation gradient tensor into elastic and inelastic parts is proposed.
The total stress is decomposed into an equilibrium stress and a viscosity-induced overstress by fol-
lowing the concept of the Zener model. To identify the constitutive equation for the viscosity from
direct experimental observations, an analytical scheme that ascertains the fundamental relation
between the inelastic strain rate and the overstress tensor of the Mandel type by evaluating simple
relaxation test results is proposed. Evaluation of the experimental results using the proposed analyt-
ical scheme confirms the necessity of considering both the current overstress and the current defor-
mation as variables to describe the evolution of the rate-dependent phenomena. Based on this
experimentally based motivation, an evolution equation using power laws is proposed to represent
the effects of internal variables on viscosity phenomena. The proposed evolution equation has been
incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way.
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Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests at dif-
ferent strain rates using the developed model show an encouraging correlation with the experiments
conducted on HDR and NR in both compression and shear regimes. Finally, an approach to extend
the proposed evolution equation for rate-dependent cyclic processes is proposed. The simulation
results are critically compared with the experiments.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. General

Vulcanized rubbers are one of the most remarkable materials having a wide range of
engineering applications including tires, engine mounts, shock-absorbing bushes, seals,
tunnel linings and wind shoes (Roeder and Stanton, 1983; Ward, 1985; Mullins, 1987; Cas-
tellani et al., 1998). Special fillers, for example, carbon black or silica are usually added
during vulcanization for improving the strength and toughness properties of rubber to suit
these individual applications (Wischt, 1998). The recent development of high damping
rubber (HDR) in base isolation devices for protecting buildings and bridges from devas-
tating earthquakes is another emerging dimension of engineering applications of rubber
(see Fujita et al., 1990; Kelly, 1991; Carr et al., 1996; Mori et al., 1996; Dorfmann and
Burtscher, 2000). Rubber industries follow a special vulcanization procedure to produce
HDR. Bridges and buildings with HDR base isolation devices have so far been displayed
encouraging field level performances by sustaining severe shocks during Loma Prieta
(1989), Northridge (1994) and Kobe (1995) earthquakes (Kelly, 1997). Rubber bearings
for base isolation devices are usually made of thin horizontal rubber layers bonded with
alternately placed horizontal steel plates (Roeder and Stanton, 1983). Cubic and cylindri-
cal shapes are the most common geometries for rubber bearings. Yet the other variations
may include trapezoidal or tapered shapes (AASHTO, 1992; Ramberger, 2002; Mattheck
and Erb, 1991) and also having V-shaped steel plates (European Commission, 1999). In
base isolation devices, steel plates imply large stiffness under vertical loadings, while rub-
ber layers incorporate low horizontal stiffness when the structure is subjected to lateral
loads (e.g., earthquakes, wind, etc.). Usually, the bearings remain under compression
due to the gravity loads coming from the superstructures. However, compression and
shear deformations act together on these bearings when a lateral load like wind or an
earthquake strikes. To estimate the performance of the bearings and thereby finding their
optimum design, the engineers usually deal with test data obtained from expensive tests
conducted on prototypes or full scale specimens. On the other hand, there exists another
possibility to develop a reliable numerical procedure like the finite element method for pre-
dicting the performance. Nevertheless, the core of such a general numerical procedure
depends largely on the constitutive model that is adequate enough for describing the major
phenomena of HDR in the relevant deformation range.

Under compression and shear deformations, HDR is expected to exhibit a high stiffness
under low strains so that motions of the structure due to service loads, traffic and wind
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become as low as possible. However, when the structure is subjected to large cyclic or sto-
chastic loads arising from earthquakes, the base isolation system should facilitate the
absorption of the delivered energy through its hysteresis properties. To achieve all these
features in HDR, a large amount of fillers (about 30%) including carbon black, silica, oils
and some other particles is added during the vulcanization process (Kelly, 1997; Yoshida
et al., 2004). Thus, HDR is developed to exhibit a strong nonlinear rate-dependent
response under monotonic loadings and to show significant hysteresis effects or energy dis-
sipation during cyclic loads. Recently, Amin (2001) and Amin et al. (2006) studied the
nonlinear rate-independent monotonic behavior of the equilibrium stress of HDR under
compression and shear. In these studies, an improved hyperelasticity relation, a procedure
for the identification of its material parameters and the implementation of the model in a
general purpose finite element code have been proposed to simulate rate-independent
responses. A study on modeling the quasi-static cyclic behavior of HDR under shear is
recently reported in Yoshida et al. (2004). All these studies, however, revealed the existence
of significant rate-dependence phenomena in HDR. This emphasizes the need for a
thorough experimental characterization and the development of modeling techniques
for rate-dependent behavior. The current work addresses these aspects.

1.2. Rate-dependent phenomena in rubbers and constitutive modeling

The experimental study of the effect of strain-rate on the response of filled rubber dates
back to the early sixties when the tensile strength of rubber was found to increase with
increasing strain rate (Mason, 1960; Dannis, 1962). The appearance of this property pos-
sesses an inherent relation to the presence of carbon black in the rubber matrix. Yet, the
effect of the strain-rate on a material is better studied through relaxation tests when the
specimen is subjected to constant strains and the corresponding stress responses are
recorded. In this context, Gent (1962a,b) noted that the stress in the specimens subjected
to constant strains relaxes significantly during the first two seconds. However, his exper-
imental arrangements did not allow him to make measurements in time intervals less than
6 s. Owing to this reason, the time history of the stress relaxation during the first six sec-
onds of the tests remained unknown. However, the advent and use of high-speed digital
computers in data acquisition systems has helped to a great extent. With the aid of digital
data acquisition systems, the subsequent studies of Lion (1996), Bergström and Boyce
(1998, 2000) report more detail information about the relaxation history of rubbers under
uniaxial tension and compression. Miehe and Keck (2000) studied the relaxation phenom-
ena in uniaxial tension–compression, while Haupt and Sedlan (2001) investigated the phe-
nomena in uniaxial and biaxial tension–torsion deformation modes. Khan and Zhang
(2001) investigated the creep, relaxation and rate-dependent behavior of polymers under
tension. Other recent experimental studies on the strain-rate effect and relaxation phenom-
ena of different polymers are also available in Colak (2005), Makradi et al. (2005), Khan
and Lopez-Pamies (2002), Krempl and Khan (2003). However, experimental information
on relaxation phenomena of HDR is limited, whereas no report exists on such a behavior
in the shear regime. Amin (2001) and Amin et al. (2002) reported the experimental inves-
tigation of HDR in the compression regime and compared the relaxation phenomena with
other natural rubber (NR) specimens. When compared with NR, rate-dependence and
stress relaxation are much more pronounced in HDR. Upon review of the results of avail-
able experimental studies, there comes out the opinion that relaxation processes in rubber
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usually involve a very fast rate of stress decay during the first few seconds. It is followed by
a very slow rate in the long-term range. The HDR shows such an effect in a prominent
way. The vulcanization process usually bears a significant influence on the appearance
of such relaxation phenomena (Ward, 1985; Mason, 1960; Meinecke and Taftaf, 1987;
Wischt, 1998).

Modeling of rate-dependent phenomena in elastomers is, perhaps, one of the most intri-
cate tasks for the rheologists of present day (Bardenhagen et al., 1997). Due to the pres-
ence of high deformability and strong nonlinearities, the constitutive model needs to be
founded on finite strain theories in consistence with the natural laws of thermodynamics.
To model viscoelastic material behavior under finite deformations there are, in principle,
two different approaches which can be motivated from the theory of linear viscoelasticity
under small strains. The first approach generalizes the concept of the Zener model or,
more general, the concept of Maxwell chains consisting of n elements to three-dimensional
finite deformations. In this case, the framework of multiplicative inelasticity leads to a set
of n multiplicative decompositions of the deformation gradient in parallel. The fundamen-
tal advantages of this concept are that each decomposition is independent from the others
and that the material model can easily be extended by adding additional Maxwell ele-
ments. Naturally, the approach of Maxwell elements is applied to formulate constitutive
models where the deformation history is the independent and the current stress the depen-
dent variable. The second approach corresponds to the generalization of the Poynting–
Thomson model or, more general, to the generalization of Kelvin chains with n elements
to finite deformations. In this case, one would obtain n intermediate configurations or
decompositions of the deformation gradient, where each of them depends on all the oth-
ers. In linear viscoelasticity this approach is mainly used to develop material models,
where the stress history is the independent and the current strain the dependent variable.
Further discussions of the Zener and the Poynting–Thomson models are available in
Huber and Tsakmakis (2000a) and Laiarinandrasana et al. (2003). In order to formulate
the constitutive theory as simple as possible, in this paper, we take the choice of the gen-
eralization of the Zener model to finite strains as illustrated in Fig. 1.

A large number of models of finite viscoelasticity is based on a phenomenological
approach, whereas some interesting models based on micromechanics also appeared until
very recently. When both the approaches have their own possibilities, the limited availabil-
ity of information regarding the microstructure and the composition of HDR motivates
the current work to consider the phenomenological approach. For micromechanics-based
   ei (t) ee (t)

ε (t)

Fig. 1. Zener model.
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approaches, the readers may refer to Ball et al. (1981), Bergström and Boyce (1998, 2000),
Drozdov and Dorfmann (2003) and the references cited therein.

The constitutive theory of finite linear viscoelasticity (Coleman and Noll, 1960, 1961) is
a major foundation for modeling rate-dependent material behavior based on the phenom-
enological approach. This general theory is formulated using functionals with fading mem-
ory properties. Sullivan et al. (1979), Johnson and Stacer (1993), Johnson et al. (1993,
1994) and Quigley and Mead (1995) proposed simplified versions of the general theory.
In these theories, the stress is decomposed into an equilibrium stress that corresponds
to the stress response at an infinite slow rate of deformation and a viscosity-induced over-
stress. The overstress is expressed as an integral over the deformation history and a relax-
ation function is specified as a measure for the material�s memory (Christensen, 1980;
Simo, 1987; Drozdov, 1997; Holzapfel and Simo, 1996; Holzapfel, 1996; Kaliske and Rot-
hert, 1997). The thermodynamic consistency requires the relaxation function to be positive
with negative slope and to possess a positive curvature (Haupt and Lion, 2002). Within
this restriction, for example, an exponential function can be employed (Leonov, 1976).
Yet, there exists a considerable limitation in representing the long-term relaxation behav-
ior of rubber using a single exponential function. In this situation, a certain number of
decreasing exponentials can be superimposed, referred as a so-called Prony series. This
process may invite a large number of material parameters in the model that are difficult
to estimate. Another innovative approach (Haupt and Lion, 2002) uses compact relaxa-
tion functions based on power laws, for example, the Mittag–Leffler function as also
employed in Lion and Kardelky (2004) in describing Payne effect, and involves only a very
few number of material parameters. This may have a benefit from the point of view of
parameter estimation, but needs to be examined with real test data.

In comparison with this, there exists another possibility of constructing finite strain
models of viscoelasticity by considering the multiplicative decomposition of the deforma-
tion gradient into elastic and inelastic parts, originally proposed by Green and Tobolsky
(1946) and further explored later on by Sidoroff (1975a,b) and Lubliner (1985). The free
energy of the system splits additively into equilibrium and non-equilibrium parts giving
the elastic equilibrium stress and the viscosity-induced overstress (Huber and Tsakmakis,
2000a). The current paper follows this approach as with earlier works of Lion (1997),
Reese and Govindjee (1998), Bonet (2001), and Laiarinandrasana et al. (2003). In this
approach, a suitable hyperelasticity model (Mooney, 1940; Rivlin, 1948; Boyce and Arr-
uda, 2000; Seibert and Schöche, 2000) is employed to reproduce the elastic responses rep-
resented by the springs, while the dashpot represents the inelastic or the so-called internal
strain. Its temporal behavior is determined by an evolution equation that is consistent with
the second law of thermodynamics (Huber and Tsakmakis, 2000a,b). A linear relation
between the inelastic strain rate and the overstress is assumed as the simplest form of
the evolution equation. Yet, such a linear relation does not often hold as other constitutive
quantities may influence the overstress dependence of the inelastic strain rate (Krempl,
1987; Amin et al., 2002). Depending on both the material and the experimental results,
nonlinear evolution equations are frequently employed to describe this relation. The evo-
lution laws belonging to this class are ordinary differential equations with variable coeffi-
cients that depend on the relevant process or internal variables. The structure and
thermodynamic consistency of these rate equations based on internal variables are
addressed in Coleman and Gurtin (1967), Lubliner (1969, 1973). Based on these papers,
Reese and Govindjee (1998), Holzapfel (1996), Miehe and Keck (2000), and Haupt and
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Sedlan (2001) attempted to introduce different forms of nonlinear evolution equations to
describe the experimentally observed material phenomena. However, in these publications
the adoption of different internal variables and their functional relations in the rate equa-
tion are based upon theoretical assumptions putting their physical significance into ques-
tion. Thus, all these models could get a better physical insight into the material if the
driving motivations behind developing these functions could be evaluated based on exper-
imental observations. The parameters identified in this way are supposed to bear a better
physical understanding of the phenomena.

1.3. Objectives and methodology

The present paper examines the relaxation behavior of HDR under homogeneous states
of compression and simple shear. To this end, simple and multi-step relaxation tests were
carried out. Identical tests were also carried out with NR for comparison. This paper fol-
lows the model of finite strain viscoelasticity presented by Huber and Tsakmakis (2000a,b)
in a sense. However, we attempt to show the possibilities of generalizing the viscosity law
in a thermodynamically consistent way for the real materials based on experimental obser-
vations. To this end, a scheme is proposed to evaluate the relation between the inelastic
strain rate and the overstress using experimental data and thereby obtaining the physical
motivation of identifying the internal variables and the resulting form of the evolution
equation. The equation has been developed by evaluating experimental results under
one-dimensional states of stress and strain and subsequently generalized for the three-
dimensional case for adoption in finite strain models. One single set of parameters that
can represent the relaxation behavior of the material under both compression and shear
is identified. The resulting finite strain viscoelasticity model has been used to simulate
the material response due to different rate dependent input histories including monotonic
as well as simple and multi-step relaxation tests. In order to discuss the capability of the
developed theory, the stress responses simulated by the model have been compared with
experimental data. Finally, an approach has been proposed to extend the evolution equa-
tion for modeling the rate-dependent cyclic behavior of HDR and NR based on the obser-
vation that indicated the presence of a significant rate dependence during loading and a
weak rate dependence during unloading.

2. Experiments

HDR and NR specimens were tested under compression and simple shear which are
the most relevant deformation modes in the application of base isolation bearings. The
specimens of NR and HDR have shear moduli (JIS K6301)1 of about 0.98 and
0.78 MPa and were manufactured by the Yokohama Rubber Company, Japan. HDR
contains a much larger amount of fillers/additives than NR. The tests were carried
out using a computer-controlled servo hydraulic testing machine (Shimadzu Servo Pul-
ser 4800) with a 200 kN load cell. The maximum displacement rate of the load cell
cross-head was 50 mm/s. The displacement was applied in the vertical direction of the
specimen and the force response was measured by the load cell. The specimens used
1 A method recommended by Japanese Standards Association.
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for compression tests were cylindrical in shape, i.e. 41 mm in height and 49 mm in diam-
eter. Since a lubricant and a poly-propylene sheet were used to reduce platen-specimen
friction, it was possible to obtain a nearly homogeneous uniaxial state of compression.
The simple shear specimens (25 mm · 25 mm · 5 mm) had a net shear area of
25 mm · 25 mm. Dual lap shear specimens (Charlton et al., 1994) were used. All tests
were carried out at room temperature. Further details of the test set-ups and procedures
are described in Amin (2001), Amin et al. (2002, 2003) and Wiraguna (2003). Prior to an
actual test, each virgin specimen was subjected to a five-cycle preloading process to
remove the Mullins� softening effect (Mullins, 1969). In recent literatures, there are some
promising models for representing Mullins� effect (Govindjee and Simo, 1991, 1992a,b;
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Fig. 2. Cyclic responses obtained from HDR at different strain rates: (a) compression; (b) simple shear. Stress and
strain measures are further illustrated in Fig. 13.
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Johnson and Beatty, 1993a,b; Ogden and Roxburgh, 1999; Besdo and Ihlemann,
2003a,b), but this paper does not consider such a behavior. This approach of removing
Mullins� effect from other phenomena of interest is similar to that of Yeoh (1990),
Yamashita and Kawabata (1992), Lion (1996, 1997), Bergström and Boyce (1998) and
Miehe and Keck (2000). In preloading for compression tests, a strain rate of 0.01/s
was applied for each cycle with a maximum stretch of 0.5. In the shear specimens,
the strain rate applied during the cyclic process up to 2.5 shear strain was 0.05/s. All
tests were conducted 20 min after completing the preloading to regularize the healing
effect (Bueche, 1961) that can exist in the specimens. Each test was conducted with a
new specimen that only contained the history of the preloading procedure.
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Fig. 3. Cyclic responses obtained from NR at different strain rates: (a) compression; (b) simple shear. Stress and
strain measures are further illustrated in Fig. 13.
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2.1. Cyclic tests at different strain rates

To study the rate-dependence, HDR and NR specimens were subjected to cyclic pro-
cesses with constant strain rates. The strain rates applied in these tests have been calcu-
lated in terms of the initial dimension of the specimen measured just before the
respective test. Fig. 2 presents the stress–strain responses as obtained from HDR under
cyclic compression and shear deformations. Five tests were conducted in compression,
each with a particular strain rate. In shear, four tests were carried out. The monotonic
responses as visible from the tests are found to be strongly nonlinear at low, moderate
and high strain levels. A comparison of the stress responses indicates a strongly pro-
nounced rate-dependent behavior during loading, whereas a much weaker rate-depen-
dence is observed during unloading. In addition, the presence of hysteresis along with
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permanent set is visible. The corresponding observations on NR are presented in Fig. 3,
where rate-dependence, hysteresis and permanent set are found to be much lower than in
the case of HDR. The presence of a lower filler content in NR is a major factor behind
such a display. In this context, we note an earlier report (Bergström and Boyce, 1998),
where also a weak rate-dependence during unloading has been observed in samples con-
taining high filler contents. The hysteresis and permanent set effects are related to slip
processes between adjacent filler particles in the rubber microstructure (Kilian et al.,
1994), thus breaking the rubber–filler bonds that are healable (Bueche, 1961). The effect
will be further discussed in the following section along with the results of simple relax-
ation tests. In general, all responses during loading suggest a diminishing trend in the
increase of the stress with increasing strain rate. Such a behavior can be related to
the approach of the material towards the so-called instantaneous stress response as
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observed earlier in the compression regime (see Amin et al., 2002), but confirmed here
also in shear regime.

2.2. Relaxation tests

The stress responses obtained from cyclic strain-controlled tests at different strain rates
have shown a strong rate dependence during loading and a less rate dependence during
unloading. In terms of a phenomenological interpretation, the viscosity of the material
can be attributed to this type of material behavior. To this end, the relaxation behavior
induced by the viscosity at different strain levels is examined in detail through simple
and multi-step relaxation tests (Figs. 4(a), 5(a), 6(a), 7(a) and 8). In the compression tests,
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a strain rate of 0.5/s was applied during the loading path while for the shear tests, the
corresponding strain rate was 3.6/s. The stress relaxation was recorded for 600 s in the
compression tests and for 3600 s in the shear tests.

Figs. 4(b) and 5(b) show the time histories of stress at different strain levels in compres-
sion and shear regimes in HDR obtained from simple relaxation tests. All curves reveal the
existence of a very fast stress relaxation during the first 200 s followed by a very slow rate
of relaxation that continues in an asymptotic sense. This conforms with observations
reported by Haupt and Sedlan (2001). In the classical approach, equilibrium states are
reached if the duration of the relaxation periods is infinitely long. Thus, the stresses mea-
sured at the termination points of the relaxation periods are approximate values of the
equilibrium stress. The difference between the current stress and the equilibrium stress is
the so-called overstress. Figs. 6(b) and 7(b) present the corresponding results obtained
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from NR where the overstresses are much lower than those observed in HDR at all strain
levels. Comparing the results obtained at different strain levels, it can be seen that relax-
ation tests conducted on NR and HDR at higher strain levels possess larger overstresses
and subsequently show a faster stress relaxation than those at lower strain levels with
lower overstresses. This observation is similar to earlier results obtained from Adiprene-
L100 (Khan and Lopez-Pamies, 2002). All these observations may have a relation with
process-dependent changes in the microstructure of the material involving breakage and
recovery of weak bonds of both the filler and the rubber matrix. A specimen under a large
overstress is more likely to lose the crosslink bonds of the rubber–filler matrix than that
under a small overstress. Such a loss of crosslink bonds corresponds to a faster relaxation
of overstress in the very beginning of the relaxation process. Similar phenomena can also
be seen in the case of NR, but in a way weaker than that of HDR, perhaps due to the pres-
ence of a lower filler content. However, the very slow stress decay as observed in the range
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of the long-term relaxation may arise from the relaxation of the rubber matrix itself and
might have a little relation with the filler-rubber bonds that are already broken. Thus, the
long term relaxation behavior of HDR and NR is found to be comparable. Such a notion
also is conformed by the results of cyclic tests, which have shown a weak rate dependence
during unloading (Figs. 2 and 3, Section 2.1). Such phenomena may be involved with the
relaxation of rubber networks with broken rubber–filler bonds. Nevertheless, the stress
relaxation phenomena observed in NR and HDR over the recorded time history were
found to be continuous one suggesting a gradual change within the microstructure. All
observations are important in the sense of developing an experimentally-based constitutive
equation for the viscosity that will be introduced in Section 4.

The results obtained from simple relaxation tests presented in Figs. 4–7 have shown the
asymptotic attainment of equilibrium states at the end of each relaxation process. This idea
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Fig. 9. Stress history recorded in multi-step relaxation tests on HDR: (a) compression; (b) simple shear. Stress
and strain measures are further illustrated in Fig. 13.
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was also explored by Lion (1996, 1997), Bergström and Boyce (1998) and Amin et al.
(2002). It is followed to estimate the equilibrium response for the specimens in compression
and shear deformations (see Amin et al., 2006) through multi-step relaxation tests. Figs.
8(a) and (b) show different strain histories as applied to compression and shear specimens.
The time histories of relaxation obtained at each step are illustrated in Figs. 9 and 10 for
HDR and NR specimens. The figures demonstrate the effect of �overstress experienced just
at the very beginning of the stress relaxation history� of a particular strain step on the relax-
ation phenomenon of that particular step. The results display a very fast relaxation rate just
after a strain step, where the overstress is large. Thus, the role of �overstress experienced just
at the very beginning of relaxation history� comes out as a dominant factor in deciding the
relaxation rate of a particular step. Such a quantity bears a direct relevance with the current
strain state. Interested readers are referred to Sections 4 and 5 for further evaluation of
these experimental observations as well as the subsequent discussion.
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Fig. 10. Stress history recorded in multi-step relaxation tests on NR: (a) compression; (b) simple shear. Stress and
strain measures are further illustrated in Fig. 13.
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3. Constitutive model

The experimental observations presented in Section 2 illustrate rate-dependent phenom-
ena in both HDR and NR. The phenomena observed under large strains suggest for a
model of finite strain viscoelasticity as sketched in Fig. 1. This section introduces a model
of this type that follows from the concept of Huber and Tsakmakis (2000a,b). It is based
on the multiplicative decomposition of the deformation gradient and the additive split of
the free energy as introduced by Lubliner (1985). The presentation leads to a discussion
about different possibilities of incorporating appropriate process variables to arrive at a
nonlinear evolution equation for the inelastic strain rate. Finally, an improved hyperelas-
ticity model has been introduced for having adequate descriptions of the free energies.

In the finite strain kinematics, the local mapping between the initial and current config-
uration of a deformable body under motion is described by the deformation gradient ten-
sor F

F ¼
X3

a¼1

kana �Na; ð1Þ

where ka = 1 + DLa/La are the stretches in the three principal directions, La are the unde-
formed lengths of material line elements and DLa their changes. Na and na are the material
and spatial vector triads. The left-Cauchy Green tensor B describes the deformation and
IB, IIB and IIIB are the invariants of B:

B ¼ FFT ¼
X3

a¼1

k2
ana � na; ð2Þ

IB ¼ trB; IIB ¼
1

2
¼ fðtrBÞ2 � trðB2Þg; IIIB ¼ det B. ð3Þ

The velocity gradient L and the deformation rate tensor D are defined as follows:

L ¼ _FF�1; ð4Þ

D ¼ 1

2
ðLþ LTÞ. ð5Þ

To represent rate-dependent material behavior, small strain theories are based on an addi-
tive decomposition of the total strain into elastic and inelastic parts denoted by ee and ei in
Fig. 1. The corresponding relation in the theory of finite strains can be attained through
the multiplicative decomposition of the deformation gradient F into an elastic part Fe and
an inelastic part Fi

F ¼ FeFi. ð6Þ
This decomposition introduces the so-called inelastic intermediate configuration as
sketched in Fig. 11. It can be obtained, when the stress is removed with an infinitely fast
rate to an equilibrium state keeping the value of Fi constant during the unloading process.
Since rubber has a fairly large compression modulus in comparison with its shear modu-
lus, we assume the material to be incompressible in the following:

det F ¼ det Fe ¼ det Fi ¼ 1. ð7Þ
Experimental observations presented in Amin et al. (2003) also substantiate this fact with-
in the practical ranges for HDR and NR material.
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Fig. 11. Multiplicative decomposition of deformation gradient tensor, F into an elastic part Fe and an inelastic
part Fi.
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As a consequence of the multiplicative split defined by Eq. (6), the left Cauchy Green
tensors Be and Bi associated with elastic and inelastic deformations are defined as follows:

Be ¼ FeF
T
e ; Bi ¼ FiF

T
i . ð8Þ

Calculating the material time rate _Be ¼ _FeF
T
e þ Fe

_F
T

e and replacing the rate of the elastic
part of deformation gradient using _Fe ¼ d=dtðFF�1

i Þ ¼ LFe � FeL̂i, we obtain

_Be ¼ �2FeD̂iF
T
e þ BeL

T þ LBe. ð9Þ
The inelastic velocity gradient L̂i and its symmetric part D̂i are defined as follows:

L̂i ¼ _FiF
�1
i ; ð10Þ

D̂i ¼
1

2
ðL̂i þ L̂

T

i Þ. ð11Þ

Since detF = 1 is valid for incompressible materials, the weighted Cauchy stress S =
(detF)T is equal to the Cauchy stress, i.e., S = T. The incompressibility constraint also im-
plies an additive constitutively non-determined contribution ‘‘�p1’’ to the stress. As a re-
sult, we have

S ¼ �p1þ SE; ð12Þ
where p is the hydrostatic pressure which needs to be determined from the boundary con-
ditions of the problem under consideration. Following the idea of the Zener model, the
extra stress SE is the sum of a rate-independent equilibrium stress S

ðEÞ
E and a rate-depen-

dent overstress S
ðOEÞ
E (cf. Fig. 12)

SE ¼ S
ðEÞ
E þ S

ðOEÞ
E . ð13Þ

To formulate the constitutive relations for the two components of SE it is common prac-
tice to evaluate the isothermal form of Clausius Duhem inequality (Coleman and Gurtin,
1967)

�qR
_Wþ SE � L P 0. ð14Þ

Due to detF = 1, or equivalently trL = 0, the power of the constraint stress and the geo-
metric compatible motions (�p1) Æ L is zero and does not occur in Eq. (14). qR is the mass
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Fig. 12. Decomposition of stress in Zener model.
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density of the material in the reference configuration and W the Helmholtz free energy per
unit mass.

For the material under consideration, an additive split of the free energy into the sum of
an equilibrium part w(E) and non-equilibrium part w(OE) is proposed

qRW ¼ wðEÞðIB; IIBÞ þ wðOEÞðIBe ; IIBeÞ. ð15Þ
Since the material is assumed to be incompressible and isotropic, the contributions of the
free energy depend only on the first and second invariants of B and Be as defined in Eq. (3).
As a consequence of the assumption of isotropy the corresponding stresses S

ðEÞ
E ¼ fðBÞ and

S
ðOEÞ
E ¼ gðBeÞ are isotropic tensor functions of their arguments B and Be. This leads to the

following interchangeability relations:

BS
ðEÞ
E ¼ S

ðEÞ
E B; BeS

ðOEÞ
E ¼ S

ðOEÞ
E Be. ð16Þ

Representation formulae of isotropic tensor functions are derived in Haupt (2000). For the
time rate of the free energy the expression

qR
_W ¼ owðEÞ

oIB

_IB þ
owðEÞ

oIIB
I _IB þ

owðOEÞ

oIBe

_IBe þ
owðOEÞ

oIIBe

I _IBe ð17aÞ

is calculated. Considering

_IB ¼ 1 � _B; I _IB ¼ ðIB1� BÞ � _B; _IBe ¼ 1 � _Be; I _IBe ¼ ðIBe 1� BeÞ � _Be ð17bÞ
for the time rates of the strain invariants and taking the Cayley–Hamilton equation in the
form of B = IB1 � IIBB�1 + IIIBB�2 and Be ¼ IBe 1� IIBe B

�1
e þ IIIBe B

�2
e into account (see,

e.g., Haupt, 2000), Eq. (17a) can also be written in the following form:

qR
_W ¼ owðEÞ

oIB
1þ owðEÞ

oIIB
ðIIBB�1 � B�2Þ

� �
� _B

þ owðOEÞ

oIBe

1þ owðOEÞ

oIIBe

ðIIBB�1
e � B�2

e Þ
� �

� _Be. ð17cÞ

Since the rate of the free energy is proportional to the time rates of the Cauchy Green ten-
sors B and Be the stress power is reformulated in the following. Considering Eqs. (4) and
(6) the velocity gradient decomposes into the sum of a pure elastic and a mixed part

L ¼ _FeF
�1
e þ Fe

_FiF
�1
i F�1

e ¼ Le þ FeL̂iF
�1
e . ð18Þ

Taking Eq. (13) into account, the stress power splits into the power of the equilibrium
stress and the power of the overstress with respect to elastic and inelastic deformations
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SE � L ¼ S
ðEÞ
E � Lþ S

ðOEÞ
E � Le þ ðF�1

e S
ðOEÞ
E FeÞ � L̂

T

i . ð19Þ
Since the isotropic tensor function S

ðOEÞ
E ¼ gðBeÞ depends only on integer powers of Be, the

stress tensor F�1
e S

ðOEÞ
E Fe ¼ gðCeÞ is also symmetric. This becomes clear when calculating

F�1
e ðBeÞnFe ¼ ðCeÞn, where n is an arbitrary integer number and Ce ¼ FT

e Fe is the right Cau-
chy Green tensor. Thus, the inelastic velocity gradient in Eq. (19) can be replaced by its
symmetric part

SE � L ¼ S
ðEÞ
E � Lþ S

ðOEÞ
E � Le þ ðF�1

e S
ðOEÞ
E FeÞ � D̂i. ð20Þ

Calculating the time rates _B ¼ d=dtðFFTÞ ¼ LBþ BLT and _Be ¼ d=dtðFeF
T
e Þ ¼ LeBeþ

BeL
T
e the total and elastic velocity gradients can be expressed as

L ¼ _BB�1 � BLTB�1 and Le ¼ _BeB
�1
e � BeL

T
e B�1

e . ð21Þ
Considering that S

ðEÞ
E ¼ fðBÞ is an isotropic function of B, i.e., B�1S

ðEÞ
E B ¼ S

ðEÞ
E , the first

term on the right-hand side of Eq. (20) can be reformulated as

S
ðEÞ
E � L ¼ trðSðEÞE

_BB�1 � S
ðEÞ
E BLTB�1Þ ¼ trðB�1S

ðEÞ
E

_B� B�1S
ðEÞ
E BLTÞ

¼ ðB�1S
ðEÞ
E Þ � _B� S

ðEÞ
E � L

leading finally to

S
ðEÞ
E � L ¼

1

2
ðB�1S

ðEÞ
E Þ � _B. ð22Þ

A similar argumentation leads to the expression

S
ðOEÞ
E � Le ¼

1

2
ðB�1

e S
ðOEÞ
E Þ � _Be ð23Þ

for the elastic power of the overstress. Inserting Eqs. (22) and (23) into Eq. (20) we obtain

SE � L ¼
1

2
ðB�1S

ðEÞ
E Þ � _Bþ 1

2
ðB�1

e S
ðOEÞ
E Þ � _Be þ ðF�1

e S
ðOEÞ
E FeÞ � D̂i; ð24Þ

i.e., the stress power contains two terms which are proportional to the time rates of the
total and the elastic left Cauchy Green tensors. Inserting Eqs. (19) and (24) into the Clau-
sius Duhem inequality, Eq. (14), and rearranging terms leads to

1

2
ðB�1S

ðEÞ
E Þ �

owðEÞ

oIB
1þ owðEÞ

oIIB
ðIIBB�1 � B�2Þ

� �� �
� _Bþ ðF�1

e S
ðOEÞ
E FeÞ � D̂i

þ 1

2
ðB�1

e S
ðOEÞ
E Þ � owðOEÞ

oIBe

1þ owðOEÞ

oIIBe

ðIIBB�1
e � B�2

e Þ
� �� �

� _Be P 0; ð25Þ

which has to be satisfied for arbitrary processes. Since B and Be are the independent vari-
ables of the free energy their rates can be varied, in principle, arbitrarily. In order to satisfy
Eq. (25) the corresponding factors of proportionality have to vanish which leads to the
following stress–strain relations:

S
ðEÞ
E ¼ 2

owðEÞ

oIB
Bþ 2

owðEÞ

oIIB
ðIIB1� B�1Þ; ð26Þ

S
ðOEÞ
E ¼ 2

owðOEÞ

oIBe

Be þ 2
owðOEÞ

oIIBe

ðIIB1� B�1
e Þ. ð27Þ
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Since the hydrostatic pressure in Eq. (12), S = �p1 + SE, is constitutively undeter-
mined, the terms which are proportional to the unit tensor in Eqs. (26) and (27)
can be omitted:

S
ðEÞ
E ¼ 2

owðEÞ

oIB
B� 2

owðEÞ

oIIB
B�1; ð28Þ

S
ðOEÞ
E ¼ 2

owðOEÞ

oIBe

Be � 2
owðOEÞ

oIIBe

B�1
e . ð29Þ

To represent the behavior of rubber, the strain energies w(E) and w(OE) have to be adequate
to represent both the equilibrium and instantaneous responses of the material.

To specify the constitutive equation describing the temporal evolution of the inelastic
strains the so-called residual inequality following from Eqs. (25)–(27) is considered

ðF�1
e S

ðOEÞ
E FeÞ � D̂i P 0. ð30Þ

It expresses that the power between the overstress and the inelastic strain rate has to be
non-negative. The most simple flow rule satisfying Eq. (30) for arbitrary processes reads as

D̂i ¼
1

g
F�1

e S
ðOEÞ
E Fe; gð. . .Þ > 0; ð31Þ

where the viscosity g can be, in principle, an arbitrary positive functional of the process
history. For example, a stress-dependent viscosity function would correspond to nonlinear
rate-dependent material responses. Since the material under discussion is incompressible,
we have tr L̂i ¼ tr D̂i ¼ 0 and thus a deviatoric tensor D̂i. Taking F�1

e ðBeÞnFe ¼ ðCeÞn where
n is an arbitrary integer number into account and considering ICe ¼ IBe and IICe ¼ IIBe , Eq.
(29) leads to the stress tensor

F�1
e S

ðOEÞ
E Fe ¼ 2

owðOEÞ

oICe

Ce � 2
owðOEÞ

oIICe

C�1
e . ð32Þ

With the definition of the overstress tensor

ŝ
ðOEÞ
E ¼ F�1

e S
ðOEÞ
E FT�1

e ð33Þ
operating on the inelastic intermediate configuration, the relation

F�1
e S

ðOEÞ
E Fe ¼ Ceŝ

ðOEÞ
E ¼ P̂

ðOEÞ
E ð34Þ

is obtained, where P̂
ðOEÞ
E is the so-called Mandel stress tensor (cf. Huber and Tsakmakis,

2000a,b or Lubliner, 1986). Since D̂i is a deviator, Eq. (31) can be written as follows:

D̂i ¼
1

gð. . .Þ ðP̂E � P̂
ðEÞ
E Þ

D. ð35Þ

In order to represent rate-dependent behavior for particular materials, it is necessary to
express the viscosity as a function of process variables like deformation or overstress or
as a function of internal variables (cf. Haupt, 2000). A dependence of the viscosity on
an internal variable with its own time scale leads to thixotropic material behavior. Never-
theless, the choice of the internal variables and the formulation of an evolution equation in
the three-dimensional form should ideally depend on the evaluation of test data obtained
from experiments with real materials.
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Furthermore, the model of finite strain viscoelasticity as presented here consists of non-
linear springs in two parallel branches to describe the equilibrium and instantaneous
responses that correspond to infinitely slow and fast rates of deformation. These are
rate-independent elastic responses that bound a domain where viscosity effects come into
play (Huber and Tsakmakis, 2000a). An adequate description of their corresponding free
energy functions w(E)(IB,IIB) or wðOEÞðIBe ; IIBeÞ is conventionally attained through hyper-
elasticity models to represent these boundary states. Such a description is essential for a
physically meaningful representation of viscosity phenomena that occur within the so-
called viscosity domain. However, due to the strong dependence of the stress on the state
of strain, experiments are required to identify an adequate form of w(E)(IB,IIB) or
wðOEÞðIBe ; IIBeÞ. Ideally, such a function should have the capability to represent the stress
responses at all possible deformation modes. In this context, the hyperelasticity model for-
mulated on the basis of experimental observations on HDR and NR under compression
and shear (see Amin et al., 2002, 2006) is adopted in the current work to describe the elas-
tic responses. Eqs. (36) and (37) show the hyperelasticity relation for both the equilibrium
and the overstress response, respectively:

wðEÞðIB; IIBÞ ¼CðEÞ5 ðIB � 3Þ þ CðEÞ3

N þ 1
ðIB � 3ÞNþ1

þ CðEÞ4

M þ 1
ðIB � 3ÞMþ1 þ CðEÞ2 ðIIB � 3Þ; ð36Þ

wðOEÞðIBe ; IIBeÞ ¼CðOEÞ
5 ðIBe � 3Þ þ CðOEÞ

3

N þ 1
ðIBe � 3ÞNþ1

þ CðOEÞ
4

M þ 1
ðIBe � 3ÞMþ1 þ CðOEÞ

2 ðIIBe � 3Þ; ð37Þ

where CðEÞ5 , CðEÞ3 , CðEÞ4 , CðEÞ2 , M and N are the material constants of the equilibrium relation

while CðEÞ5 , CðEÞ3 , CðEÞ4 , CðEÞ2 are those of the overstress. The incorporation of Eqs. (36) and
(37) into Eqs. 28,29,31 and (35) leads to a thermodynamically consistent finite strain
viscoelasticity model.

4. Experimental identification of the evolution of viscosity

In the preceding section, a general constitutive theory based on recent publications by
Huber and Tsakmakis (2000a,b) has been introduced. In this formulation, the constitu-
tive relation expressing the temporal evolution of the inelastic strain rate D̂i, the over-
stress tensor of the Mandel type P̂

ðOEÞ
E is the driving force. The viscosity g serves as a

factor of proportionality and may be assumed to be constant in the formulation of
the simplest type. However, from experience of the authors, we believe that rate-depen-
dent models with constant viscosities cannot represent the experimentally observed
rate-dependent phenomena of rubber (Amin et al., 2002). Since the second law of ther-
modynamics only requires g(. . .) > 0 (Section 3), there is the possibility to generalize the
flow rule and to introduce a dependence of the viscosity, for example, on stress, defor-
mation or internal variables. To this end, the earlier concepts available in Reese and
Govindjee (1998), Holzapfel (1996), Miehe and Keck (2000), and Haupt and Sedlan
(2001) can be referred to, where different expressions were assumed to describe the non-
linear evolution of viscosity. In contrast to these efforts, the contribution of the current
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work is to present a scheme to resolve viscosity phenomena by analyzing the experimen-
tal data and thereby achieving an adequate description of the evolution equation (Eq.
(35)). The quest for having a physical understanding of the phenomena and their
description through the evolution equation played as a major motivation for undertak-
ing such an effort. Thus, the experimentally observed stress and strain histories belong-
ing to relaxation tests under compression and shear have been used to calculate the

fundamental D̂i vs. P̂
ðOEÞ
E relation for one-dimensional cases. On this basis, the depen-

dence of different internal variables on this relation have been assessed to arrive at
the constitutive equation for the viscosity that holds for both NR and HDR within
the considered deformation ranges.

4.1. Scheme for analyzing stress relaxation data

A scheme is proposed to analyze the relaxation histories obtained from the experiments
shown in Section 2 with the aim to calculate fundamental quantities of the Zener model,
e.g., the rate of inelastic strain and the overstress associated with the Maxwell element con-
nected in parallel with a spring (Fig. 1). The analysis is founded on the multiplicative
decomposition of the deformation gradient F (Eq. (6), Fig. 11) into elastic Fe and inelastic
Fi parts. Since the material is assumed to be isotropic and incompressible (Eq. (7)) the pro-
cedure presented here conforms with the constitutive model presented in Section 3. Yet, to
utilize the experimental results the finite strain model needs to be degenerated into the cor-
responding one-dimensional form in accordance with the deformations applied in the
experiments, e.g., uniaxial compression and simple shear.

If a specimen is subjected to uniaxial homogeneous compression (Section 2), the prin-
cipal stretch k1 in the loading direction becomes compressed (Fig. 13(a)) and those in the
two other directions k2 and k3 are under tension. Thus, the deformation gradient F reads
as:
Fig. 13. Fundamental description of deformation: (a) homogeneous uniaxial compression; (b) simple shear.
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F ¼
k1 0 0

0 k2 0

0 0 k3

0
B@

1
CA. ð38Þ

Considering isotropy and incompressibility we have k2
2 ¼ k2

3 ¼ k�1
1 , while Eq. (3) leads the

strain invariants to be

I ¼ 2

k1

þ k2
1; II ¼ 1

k2
1

þ 2k1; III ¼ 1. ð39Þ

Since the lateral boundaries of the specimen are stress-free the weighted Cauchy stress ten-
sor S is given by

S ¼
S11 0 0

0 0 0

0 0 0

0
B@

1
CA. ð40Þ

Following the multiplicative decomposition of F and utilizing Eq. (11) we further have:

k1i
¼ k1

k1e

; ð41Þ

Di11
¼

_k1i

k1i

; ð42Þ

where the subscripts i and e stand for inelastic and elastic parts of deformation. Further-
more, the extra part of the weighted Cauchy overstress SðOEÞ

11E
and the Mandel overstress,

P ðOEÞ
11E

become equal (Eq. (34)):

SðOEÞ
11E
¼ P ðOEÞ

11E
. ð43Þ

Using Eqs. (29) and (37), the extra part of the overstress is obtained as

SðOEÞ
11E
¼ 2k2

1e
CðOEÞ

5 þ CðOEÞ
3 k2

1e
þ 2

k1e

� 3

� �N

þ CðOEÞ
4 k2

1e
þ 2

k1e

� 3

� �M
" #

� 2CðOEÞ
2

k2
1e

;

ð44Þ
where

SðOEÞ
11E
¼ 2

3
ðS11 � SðOEÞ

11 Þ. ð45Þ

In order to establish a relation between theory and experiment, we note the equivalence of
the experimentally recorded stresses as presented in Figs. 4 and 5 with the weighted Cauchy
stress S11 (Eq. (45)), where material incompressibility is assumed (Eq. (7)). Furthermore,
the values of the stress recorded at the termination points of the relaxation periods are re-
garded as equilibrium stresses, SðEÞ11 . Based on this concept, it is possible to solve Eq. (44)
along with (45) to calculate the elastic stretch k1e for a particular value of SðOEÞ

11E
. Due to

the nonlinear form of Eq. (44), a numerical method may be applied to solve it. In the case
of a simpler form of the hyperelasticity relation, for example a Neo-Hookean model, the
solution procedure is simpler. Thus, the experimentally recorded relaxation history
can be analyzed to obtain the time history of k1e . The attainment of the time history of



A.F.M.S. Amin et al. / International Journal of Plasticity 22 (2006) 1610–1657 1633
D11i
by taking the time derivatives over the experimental data points follows naturally from

Eqs. (41) and (42).
The scheme presented by Eqs. (38)–(45) is applied for analyzing uniaxial compression

data but it can also be formulated for simple shear. In this case, the direction of the applied
displacement does not coincide with the directions of the principal stretches; rather it
involves a rotation of axes (Fig. 13(b)). Due to the applied shear strain c, the deformation
gradient F, its inelastic part Fi and the strain invariants are described as:

F ¼
1 c 0

0 1 0

0 0 1

0
B@

1
CA; Fi ¼

1 ci 0

0 1 0

0 0 1

0
B@

1
CA; ð46Þ

I ¼ II ¼ 3þ c2; III ¼ 1. ð47Þ

The equations corresponding to Eqs. (40)–(45) can also be written for simple shear as

S ¼
S11 S12 0

S12 S22 0

0 0 S33

0
B@

1
CA. ð48Þ

Calculating Fe ¼ FF�1
i , the inelastic shear strain and its rate can be expressed as:

ci ¼ c� ce; ð49Þ
Di12
¼ _ci. ð50Þ

The extra part of the stresses are written as:

SðOEÞ
12E
¼ P ðOEÞ

12E
; ð51Þ

SðOEÞ
12E
¼ 2ce CðOEÞ

5 þ CðOEÞ
2 þ CðOEÞ

3 c2N
e þ CðOEÞ

4 c2M
e

j k
; ð52Þ

where

SðOEÞ
12E
¼ SðOEÞ

12 ¼ S12 � SðEÞ12 . ð53Þ
4.2. Evaluation of experimental results and proposal for an evolution equation

The evaluation scheme proposed in Section 4.1 has been used in this section to calculate

the histories of D11i
, D12i

, P ðOEÞ
11E

and P ðOEÞ
12E

from the experimental data using Eqs. (42)–(45)
and (49)–(53). In order to solve these relations, it is necessary to describe the overstress
response adequately by Eqs. (44) and (52) through a set of material parameters that hold
for both compression and shear. To this end, the set of material parameters for the equi-
librium and instantaneous stress responses for HDR and NR obtained earlier (Amin et al.,
2006) has been applied. The identification procedure has simultaneously minimized the
least-square residuals of uniaxial compression and simple shear data. Table 1 presents
the set of estimated parameters for HDR and NR. In this procedure, the multi-step relax-
ation data (Figs. 8–10) was used to trace the equilibrium curve. The instantaneous
response was approximated from the asymptotic convergence (see Amin et al., 2002) of
the loading phase response of the cyclic tests (Figs. 2 and 3) conducted at high strain rates.
The parameters obtained for the equilibrium stress were subtracted from those of the



Table 1
Elasticity parameters for HDR and NR

Specimens Responses C2 (MPa) C3 (MPa) C4 (MPa) C5 (MPa) M N

HDR Equilibrium 0.145 1.182 �5.297 4.262 0.06 0.27
Instantaneous 0.166 2.477 �11.689 9.707
Overstress 0.021 1.295 �6.392 5.445

NR Equilibrium 0.095 0.019 �0.515 0.754 0.15 1.29
Instantaneous 0.176 0.043 �0.861 1.056
Overstress 0.081 0.024 �0.346 0.302

1634 A.F.M.S. Amin et al. / International Journal of Plasticity 22 (2006) 1610–1657
spontaneous stress to calculate the parameters of the overstress, i.e., CðOEÞ
5 , CðOEÞ

3 , CðOEÞ
4 ,

CðOEÞ
2 (see Eqs. (44) and (52)). To calculate the histories of inelastic strain rate and over-

stress, special treatment of experimental data is required for taking the time derivatives
over experimental data points, which usually contain scattering due to noise. Such noises
are likely to yield unphysical spikes in the results. In order to reduce scattering of exper-
imental data, either a moving averaging technique or fitting a polynomial function prior to
making the derivative operation can be adopted. The present work chooses the former one
to smoothen the noises and thereby assessing the real material phenomena. All calcula-
tions were done using Mathematica� (Wolfram, 1999). Fig. 14 presents the time histories
of k1e and ce obtained from solving Eqs. (44) and (52), respectively, for the relaxation data
obtained from HDR. They show an increase in k1e and decrease in ce with time, owing to
progressive stress relaxation. Since, the stress relaxation under simple shear was recorded
up to 3600 s, the asymptotic convergence of the ce history towards the equilibrium state
can be well-noted in Fig. 14(b). The successful application of the moving averaging tech-
nique in obtaining the history of Di12 by taking the time derivative of ci has been illustrated
in Fig. 15. Fig. 16 presents different segments of the histories of Di11 and Di12 (Eqs. (42)
and (50)) to manifest the decrease in the inelastic strain rates with the progress of the relax-
ation process in HDR. Similar results were obtained for NR, but the presentation is being
skipped here for space limitation.

Figs. 17 and 18 present the fundamental relation between the Mandel overstress P̂
ðOEÞ
E

and the inelastic strain rate D̂i for uniaxial compression ðP ðOEÞ
11E � Di11Þ and simple shear

ðP ðOEÞ
12E
� Di12Þ. These results were obtained from the relaxation data at different strains

(Figs. 4–7) using the proposed identification scheme. The existence of a nonlinear relation
can be observed at all cases in HDR and NR. This suggests the necessity of considering the
nonlinear dependence of the viscosity in the evolution law (Eq. (35)). The nonlinearity is
more prominent when D̂i is slower. Furthermore, the relations are found to depend
directly on the strain levels of the relaxation experiments.

To formulate an evolution law in a closed form, the stresses P ðOEÞ
11E

and P ðOEÞ
12E

have been
plotted in a form normalized with the overstress values that existed just at the very begin-
ning of the relaxation processes. These normalization stresses depend on the deformation

and are denoted as ðP̂ ðOEÞ
E jmaxÞ. A physical motivation of this procedure is given by the dis-

cussion in Section 2, but we note the existence of a very unique relation for each HDR and
NR, in both compression and shear. Figs. 19 and 20 visualize the relations between the

normalized overstress P̂
ðOEÞ
E ðtÞ=P̂

ðOEÞ
E jmax and D̂iðtÞ for compression, i.e., P ðOEÞ

11E =P ðOEÞ
11E jmax

vs. Di11, and for simple shear, i.e., P ðOEÞ
12E

=P ðOEÞ
12E
jmax vs. Di12. The plots show good agreement

between the data points and the power law functions for all cases except for the case of NR
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under compression (Fig. 20(a)). Availability of a bit limited number of test data may be
one of the reasons for producing such a scatter (Fig. 20(a)). The other possibility of
improving the representation is discussed in Section 5.1 together with the simulation
results. Yet, all results motivate a power law for describing such relations. In addition,
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a double logarithmic relation may be assumed between the normalization stresses P̂
ðOEÞ
E jmax

recorded at the beginnings of the relaxation histories and the applied strains (see Fig. 21).
On the basis of these facts (Figs. 19–21), we propose a constitutive equation for the viscos-
ity of the power law type in general three-dimensional form

D̂i ¼
kP̂ðOEÞ

E kd

g0pd � kBku � P̂
ðOEÞ
E ; ð54Þ

where d, u and g0 are material parameters to be determined and kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
X �X
p

is the
magnitude of a tensor. The constant p (=1 MPa) is introduced for dimensional reasons.
From Eq. (54) we recover the constitutive equation for the nonlinear viscosity in closed
form

1

gðP̂ðOEÞ
E ;BÞ

¼ 1

g0

kP̂ðOEÞ
E k
p

 !d

kBk�u. ð55Þ

We note that the dependence of the viscosity function g on the left Cauchy Green tensor B

in Eq. (55) is similar to the suggestion provided in Haupt and Sedlan (2001). However, in
comparison with the earlier work where an inverse dependence of g on the total strain rate

D was chosen, the current work introduces the overstress P̂
ðOEÞ
E as variable in the evolution

equation. The relation proposed here can be incorporated in the constitutive model (Sec-
tion 3) to derive a rate-dependent model with a nonlinear viscosity function. To estimate
the material parameters of the viscosity specified by Eqs. (54) and (55) a least-square

method can be applied using the data of P̂
ðOEÞ
E =P̂

ðOEÞ
E jmax and D̂i (Figs. 19 and 20). Table 2

presents the identified values of the parameters for HDR and NR. The parameters
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describe both the stress and the strain dependence of the positive viscosity, hence consis-
tent with thermodynamic requirements. These parameters along with the elasticity param-
eters will be used in Section 5 to study the performance of the model in simulating stress
responses to strain processes.
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4.3. Extension of the evolution equation for incorporating weak-rate dependency during

unloading

The test data shown in Figs. 2 and 3 are considered again with regard to the unloading
behavior of HDR and NR. There, although strong rate dependence was observed during
the loading phase, weaker rate dependence was found during unloading. All cyclic tests
under both compression and shear show this fact. To describe this within the developed
model, a smaller viscosity is needed during unloading than during loading. This section
describes a possibility of modeling the response of HDR under cyclic compression and
shear. The approach is based on the assumption that there exists a general constitutive
equation for the viscosity which is valid in both loading and unloading. The total stress
power S Æ D is applied to decide between loading and unloading and a tangent hyperbolic
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function can be employed to assure a very low rate dependence during unloading. The
modified constitutive equation for the viscosity is therefore expressed as

g ¼ g1 þ ðg0 � g1Þ
1

2
f1þ tanhfnS �Dgg

� �
pdkBku

kP̂ðOEÞ
E kd

. ð56Þ

To represent the difference in rate dependence between loading and unloading we take the
choice of g0� g1 Æ n is another material parameter that determines the influence of the
stress power S Æ D. For nS Æ D� 0 we have tanh(nS Æ D) � 1 and for nS Æ D� 0 we have
tanh(nS Æ D) � �1. The other parameters are those as defined for the simulation of mono-
tonic processes. This is a further generalization of the earlier concept (Section 4.2) where
only the loading cases were represented. Some qualitative numerical calculations in the
compression and shear regimes are presented in the following section.
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5. Numerical simulation

The experiments presented in Section 2 revealed viscosity-induced rate-dependent
effects in HDR and NR under compression and shear. A model of finite viscoelasticity
was formulated in Section 3 along with proposals to generalize it with an improved hyper-
elasticity relation and a nonlinear equation for the viscosity in a thermodynamically con-
sistent way. A new method to examine and identify the dependence of the viscosity on the
process variables by using one-dimensional relaxation data has been presented in Section
4. The application of this method has motivated a physically nonlinear constitutive equa-
tion for the viscosity in a three-dimensional form. In this section, this relation is inserted
into the finite strain model (Section 3) to investigate the properties of the whole constitu-
tive theory and the identified parameters (Tables 1 and 2) in simulating relaxation tests at
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different strains. The simulations of multi-step relaxation, monotonic and cyclic tests and
as well as their comparison with experiments follow next.

5.1. Relaxation tests

Figs. 22 and 23 present the simulated stress responses of simple relaxation experiments
in compression and simple shear regimes on HDR and NR. The results (Figs. 22(a) and (b)
and 23(b)) are compared very closely with the experiments in representing the instanta-
neous responses and equilibrium states that the specimens encounter at the beginning
and the end of the relaxation processes. However, as we see in Fig. 23(a), the agreement
between experiment and simulation in the short time range is not so well. This agrees with
the findings of Fig. 20(a). To improve the representation in this range, we plan to carry out
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Table 2
Viscosity parameters

Specimens g0 (MPa s) d /

HDR 1.63 1.46 2.29
NR 2.46 0.78 2.16
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the parameter identification by using the time derivative of the stress in a future project.
Another possibility is to introduce weighting factors in the error norm which is used in
the identification procedure. Furthermore, the stress relaxation over the whole experimen-
tally recorded time range, 600 s for compression and 3600 s for shear, is described in a very
promising way. Thus, the enhanced capability of the proposed nonlinear viscosity model
and the parameters in comparison with the earlier linear model (Amin et al., 2002) is



ta

b

(sec)

T
11

(M
P

a)

0 500 1000 1500 2000 2500 3000 3500

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600

-1.7 5

-1.5

-1.2 5

-1

-0.7 5

-0.5

-0.2 5

0

t (sec)

T
12

(M
P

a)

Fig. 22. Numerical simulation of simple relaxation test of HDR. The figures show the simulated stress histories:
(a) at 0.7 stretch; (b) at 1.00 shear strain: (�) numerical simulation, (�) experiment.

A.F.M.S. Amin et al. / International Journal of Plasticity 22 (2006) 1610–1657 1643
clearly demonstrated. With the linear model, it was possible to describe the relaxation to a
maximum of only up to 50 s for HDR and 10 s for NR. The simulations of the evolution

of the viscosity g with changes in kP̂ðOEÞ
E k (Eq. (55)) in simple relaxation tests at different

strains (Figs. 4–7) are shown in Figs. 24 and 25, respectively, for HDR and NR. The

strong nonlinearity in the evolution of g with increasing kP̂ðOEÞ
E k and B can be noted for

HDR under shear in Fig. 24(b) whereas Fig. 25(a) reveals a contrast phenomenon for
NR under compression with a much weaker nonlinearity. In general, the nonlinearity in
the evolution of the viscosity as revealed from the simulations (Figs. 24 and 25) is found
to be much stronger under shear than that under compression.

At this stage, the capability of the constitutive model to represent process-dependent
viscosity effects will be examined by simulating multi-step stress relaxations. Figs. 26
and 27 compare the experimental relaxation curves with the simulated ones for HDR
and NR. The long-term relaxation behavior is well described by the theory but in the
short-term range there are differences. Since the instantaneous response of the overstress
is underestimated, it can be assumed that there are thixotropic recovery effects in the mate-
rial which correspond to a process-dependent viscosity with its own time scale. In the
developed theory, the viscosity depends only on the current deformation and overstress,
but a process-dependent viscosity would depend on additional internal variables. If the



ta

b

(sec)

T
11

(M
P

a)

t (sec)

T
12

(M
P

a)

0 100 200 300 400 500 600

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 500 1000 1500 2000 2500 3000 3500

0.5

1

1.5

2

2.5

Fig. 23. Numerical simulation of simple relaxation test of NR. The figures show the simulated stress histories:
(a) at 0.65 stretch; (b) at 2.18 shear strain: (�) numerical simulation, (�) experiment.

1644 A.F.M.S. Amin et al. / International Journal of Plasticity 22 (2006) 1610–1657
viscosity function would have its own recovery behavior, it becomes larger during the
relaxation periods and thus leads to larger overstresses in the short term range of the next
relaxation event. A further argumentation can be founded on the introduction of an addi-
tional Maxwell element in the constitutive model with a much smaller relaxation time.
Concerning the discrepancies between simulation and test more experimental data is
needed to understand the process dependence of relaxation behavior and to develop cor-
responding models.

5.2. Monotonic tests

The capability of the theory to simulate the rate-dependent monotonic response of
HDR and NR is examined in Figs. 28 and 29 by comparing the numerical results with
experimental data. The comparison shows an excellent correlation between simulation
and experiments for slow and fast strain rates in both compression and shear deformation
ranges. In general, the accuracy in predicting the experimental response was found to be
better under compression than under shear; and also in NR than in HDR. This observa-
tion correlates with the results presented in Figs. 24 and 25 where the strongest nonlinear-
ity of the viscosity function was found to exist in HDR under simple shear (Fig. 24(b)).
The nonlinearity of the viscosity was found to be the weakest in NR under compression
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(Fig. 25(a)). Yet, all simulated responses are found to well describe the rate-dependent
monotonic response at low, moderate and large strains along with the representation of
high initial stiffness values at low strains, observed especially in HDR. Furthermore, the
asymptotic convergence property of the model towards the instantaneous state with
increasing strain rate is clearly visible in Fig. 28(a) for HDR under compression. A similar
behavior is observed in the other cases, but the presentation of those results is omitted for
space limitation. In comparison with the model with a constant viscosity (Amin et al.,
2002), a significant improvement in the stress representation for very slow strain rates
can be noted. This demonstrates the improvement achievable in monotonic response pre-
diction by considering nonlinear viscosity phenomena in the constitutive model. In addi-
tion, we note the reasonable adequacy of the respective set of viscosity parameters for
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HDR and NR identified from independent simple relaxation tests in predicting rate-
dependent monotonic responses as well. Not to mention, the relaxation and monotonic
tests on each material were conducted in two different experimental set-ups, e.g., uniaxial
compression and simple shear (Section 2). Thus, the developed constitutive theory with its
nonlinear viscosity function demonstrates its physical and general sense. Nevertheless, due
to power law-based compact nature of the evolution equation, the number of viscosity
parameters is quite low, thus offering a notable simplicity in parameter estimation efforts.

5.3. Cyclic tests

One approach to generalize the constitutive equation of the nonlinear viscosity function
(Eq. (55)) to represent the experimentally observed cyclic stress responses is presented in
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Section 4.3 (Eq. (56)). The capability of this approach is investigated in this section for
HDR. In Fig. 30 two experimental loading and unloading tests under compression with
different strain rates are compared with the simulations. The main effect of interest is
the pronounced difference in rate sensitivity during loading and unloading which occurs
in many polymers (see also Bergström and Boyce, 1998; Khan and Zhang, 2001). The



T
11

(M
P

a)
T

12
(M

P
a)

0 1000 2000 3000 4000 5000 6000

-1.7 5

-1.5

-1.2 5

-1

-0.7 5

-0.5

-0.2 5

0

0 250 500 750 1000 1250 1500 1750

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)a

b t (sec)

Fig. 27. Numerical simulation of multi-step relaxation test of NR. The figures show the stress history:
(a) compression; (b) simple shear: (�) numerical simulation, (�) experiment.

1648 A.F.M.S. Amin et al. / International Journal of Plasticity 22 (2006) 1610–1657
proposed theory has successfully modeled this behavior. Since the hysteresis of the equi-
librium response is not considered in the model, permanent set is underestimated. Hence,
it can be expected that an additional Maxwell element with a constant viscosity would
improve the quality of representation. In Fig. 31 two symmetrical shear tests with different
rates are shown and compared with the corresponding simulations. The investigated
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elastomer shows a pronounced rate sensitivity during loading in shear and a less one dur-
ing unloading which is described by the model. The amount of hysteresis is underestimated
which is similar to the case under compression. Thus, it can be summarized that many
effects of HDR are well understood and can be described by the model but there are also
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the stress–strain responses: (a) compression; (b) simple shear: (�) numerical simulation, (�) experiment.
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many others, where the proposed constitutive approach has to be improved. The approach
of rate-independent elastoplasticity (e.g., Yoshida et al., 2004) can represent stress–strain
curves with constant rate, but neither relaxation nor creep or rate-dependence phenomena
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can be described. From our point of view, the approach of modeling rubber with plasticity
models as applied by Yoshida et al. (2004) describes stress strain curves under constant
rates but the physical basis with respect to the thermodynamic consistency is missing.
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6. Conclusions

Under both cyclic compression and shear, HDR and NR exhibit significant rate-depen-
dent phenomena in the loading phase whereas during unloading the rate-dependence is very
weak. Furthermore, the characterization of viscosity-induced rate-dependent phenomena
through simple relaxation experiments shows a very fast stress decay at the very beginning
of the relaxation process followed by a very slow decay in the long-term range. These obser-
vations provide a motivation to consider the nonlinear dependence of the viscosity in mod-
eling the rate-dependent behavior of HDR and NR. To this end, a finite strain viscoelasticity
theory based on a multiplicative splitting of the deformation gradient F into elastic Fe and
inelastic Fi parts is developed. The relation between the inelastic strain rate D̂i and the over-

stress P̂
ðOEÞ
E describes the viscosity phenomena. Since the second law of thermodynamics

only requires the viscosity g to be a positive quantity, there is a possibility to express the flow
rule in a general but thermodynamically consistent form by considering a nonlinear depen-
dence of g on other process quantities or internal variables. Yet, to maintain the physical
meaning of the flow rule, it is preferable to make such a generalization based on clear exper-
imental evidences. In this context, it is possible to employ an analytical scheme founded on
the basis of the multiplicative split of deformation gradient F to analyze the data obtained

from stress relaxation experiments and thereby evaluating the fundamental D̂i vs. P̂
ðOEÞ
E rela-

tion for one-dimensional cases. To reduce the scattering of the numerically differentiated
experimental data in this process, the moving averaging technique was applied. Since this
technique does not eliminate all these oscillations, it should be better to smooth the overall
signals by fitting an appropriate function on it, for example, an exponential function or a
power law. The evaluation conducted in this paper suggests the dominance of the �overstress

values that existed just at the very beginning of the relaxation process� P̂
ðOEÞ
E jmax in the stress

relaxation process for both HDR and NR under compression and shear. Furthermore, the

existence of a relation between P̂
ðOEÞ
E jmax and the magnitude of deformation iBi is also evi-

dent. Thus, it is possible to identify a nonlinear constitutive relation for the viscosity which is
based on two power laws for the investigated rubbery materials. The finite strain viscoelas-
ticity model with a nonlinear equation for the viscosity maintains a compact and simple
form. It is conceptually similar to the standard three parameter solid or the Zener model
(Fig. 1) involving only three material constants. Numerical simulation of monotonic defor-
mation processes with different strain rates, simple relaxation and multi-step relaxation tests
have illustrated the adequacy of the model and the identified parameters in physical and
general senses. Although the analytic approach to evaluate the stress relaxation data to
identify the evolution law for the viscosity has been utilized in this literature only for
HDR and NR, we believe that this technique is conceptually applicable for other solids
under finite and small strains as well. Furthermore, the stress power S Æ D can be utilized
as a continuous measure for the degree of loading–unloading while the tangent hyperbolic
function can be used to represent a strong rate dependence during loading and a weak rate-
dependency during the unloading phase of a cyclic process.
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