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An experimental scheme is proposed to characterize the viscoelastic property of
elastomers described by equilibrium response, instantaneous response and viscosity effect.
The difficulties of directly applying infinitely fast or slow loading rate on this highly
viscous material to obtain equilibrium and instantaneous responses and thereby to identify
the nonlinear elastic parameters were overcome. To do this, experimental results were
extrapolated and a modified hyperelasticity model was used. The hyperelasticity model
was incorporated in a finite deformation rate-dependent model structure. The proposed
scheme was applied on two different kinds of elastomers. Numerical simulation of test
results followed by sensitivity studies verified the adequacy and robustness of the

proposed scheme.
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1. Introduction

Apart from the traditional uses of elastomers in structural
components like seals between tunnel segments and shock
absorbers, the materials of this range are now also widely
used in base isolation devices for protecting the structures
from earthquakes. For such specific end use, high damping
rubbers with the better energy absorption property have also
been developed”. The mechanical behavior of all these
materials is dominated by nonlinear rate-dependent elastic
response. In addition, when subjected to cyclic loading,
typical hysteresis and permanent set also appear. These two
effects are specially more pronounced in high damping
rubber. Hence, to reproduce the mechanical behavior of
elastomers under cyclic loading, there is a necessity to
develop a constitutive model that will be capable of
simulating rate-dependent nonlinear response including
hysteresis and permanent set. Although the final goal of this
research is to develop a constitutive model representing all
these aspects, the scope of this paper is restricted to the
nonlinear viscoelastic behavior as the first step.

The rate-dependent responses obtained from a typical
viscoelastic solid are schematically presented in Fig. 1. When

a viscoelastic solid is loaded at an infinitely slow rate, the
stress-strain curve follows the E-E’ path. This behavior is
called the equilibrium response. On the other hand, in case of
an infinitely fast loading rate, the response takes the I-I' path.
Such a response is known as the instantaneous response.
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Figure 1. Typical responses from a viscoelastic solid.
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Both equilibrium and instantaneous responses are elastic
responses and the domain of viscosity lies between these two
states”. Thus, elastic parameters determine the boundary of
the domain where viscosity effects come into play. The area
of the domain is directly related to the extent of material
viscosity. In this context, one of the ways of developing a
physically meaningful constitutive model is to include
parameters that directly express the instantaneous and
equilibrium behavior of the material. However, specially in
case of highly viscous elastomeric materials, there are
experimental limitations in applying infinitely slow and fast
loading on a specimen to arrive at the equilibrium and
instantaneous states respectively. Accordingly, most of the
previous constitutive models include parameters to represent
viscoelastic response without making any reference to
instantaneous and equilibrium behavior of the material. On
the other hand, even though the constitutive model contains
the parameters to express the equilibrium and the
instantaneous responses, these are estimated by numerical
trials”"" on the basis of data of the experiments carried out at
the middle of viscous domain. The parameters identified in
this way, however, lose the physical meaning.

With  this
identification

background, we propose a parameter

scheme to identify the parameters for

instantaneous and equilibrium response from the
experimental data. Although the scheme is applicable to both
tensile and compressive loading, in this paper, the behavior
under compression was investigated. The scheme was
applied on two different types of elastomers to observe the
fundamental viscoelastic behavior of each material under
compression and thereby to check the applicability of the
proposed scheme under varied material types. In this course,
a finite deformation viscoelasticity model was considered for
determining the material parameters from the experimental
data. Numerical simulation results from the model using the
identified parameters were compared with experimental data
to verify the adequacy of the proposed scheme. Finally, a
sensitivity study was carried out to discuss the robustness of

the proposed scheme.
2. Experimental observation

The proposed experimental scheme to characterize the
viscoelastic properties of elastomers comprises of a
multi-step relaxation test, monotonic compression tests and
simple relaxation tests. All the tests were carried out on two
types of materials. The following sections present the details
of the experiments and the inferences observed thereon.

2.1 Specimens

Two different kinds of elastomers namely ‘Specimen-I’
and ‘Specimen-II' were chosen for the present study.

Specimen-I is an elastomer for general-purpose use. The
Specimen-II was manufactured in Yokohama Rubber Co.
and it complies with G10 natural rubber specification for
bridge bearings.

Both specimens differ each other from micro-structural
point of view. Figure 2 shows the comparative microstructure
of the specimens as visualized from scanning electron
microscope (SEM) observation. The observation was made
in a Jeol JSM 5600LV machine. The SEM images illustrate a
void dominated microstructure of Specimen-I in contrast to
the Specimen-II, where the occurrence of voids is rare.
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Figure 2. Micro-graphs of (a) Specimen-1; (b)

Specimen-IL

2.2 Experimental set-up

Cubic blocks of Specimen-I (5S0mm on each side) and
cylindrical blocks of Specimen-II (Height: 39 mm, Diameter:
49 mm) were tested at room temperature in a
computer-controlled servo-hydraulic testing machine using
Shimadzu servo-pulser 4800. In order to cut the friction
between the sample and the loading plates, polypropylene
films with lubricant on top and bottom of the sample were

used. The axial force and the displacements were recorded
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using a personal computer. In this context, the applied
vertical displacement and the corresponding axial force of a
loaded specimen were obtained from the servo-pulser output.
The lateral displacement of the specimen was measured using
a laser transducer (Ono Sokki LD-1110M-020). The
measurement was taken at the midpoint of the specimen
surface. However, due to very large applied vertical
displacement (resulting up to 50% compressive strain), the

midpoint of the specimen surface on deformation shifts

significantly in vertical plane from its initial position. To
overcome this problem and to catch the midpoint of the
deformed specimen in vertical plane, a special type of jig
using a boom device was used to move the laser transducer at
a rate synchronized with the applied strain rate. Figure 3
shows the details of the eXperimental set-up.

In addition to direct measurement, laterat displacement of
the specimen was also calculated from the measured vertical
displacement and using assumptions of incompressibility and
homogeneous deformation of the specimens. The lateral
displacements obtained by using these two approaches were
found to be within 2% of each other indicating the validity of
the assumptions. In this situation, the applied stretch (i.e.
1+dL/L, where L is the undeformed length) and the Cauchy
stress (true stress) for each test as presented in the following
sections were calculated under the assumptions of
homogeneous deformation and incompressibility of the

specimens.
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Figure 3. Experimental set-up. (a) Elevation; (b) Section
A-A.

2.3 Pre-loading

Prior to actual experiment, all virgin specimens were
subjected to a specified pre-loading sequence. The objective
of the pre-loading was to obtain a stable state of the material
by removing the Mullins softening effects) from other
inelastic behavior. In the pre-loading, each virgin specimen
was subjected to cyclic uniaxial compressive loading for 5
cycles with a strain rate of 0.01/s.

Figure 4 presents the time history of the applied stretch
and stress-stretch relation in a pre-loading test for Specimen-1
and Specimen-II. The softening behavior in the first loading
cycle, known as the Mullins effect, is evident from the figure.
In Specimen-, the softening behavior is more pronounced
than that in the Specimen-II. Both specimens showed a
repeatable stress-stretch response after passing 2-3 loading
cycles indicating the removal of the Mullins effect. However,
the Mullins softening effect in a specimen recovers slowly
with time. It is known as the ‘re-healing effect’®. To keep this
re-healing effect to a constant amount for each specimen, in
each test described in the following sections, a constant 20
min time interval was maintained between the pre-loading
and the actual test. Apart from the Mullins effect, the typical
strain-hardening feature of elastomers at higher strain level is
more visible in Specimen-I than that in the Specimen-1I after
the first cycle of pre-loading.
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Figure 4. Applied stretch history and stretch-stress
response observed in pre-loading. (a) Specimen-I (b)

Specimen-IL
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2.4 Multi-step relaxation test

A multi-step relaxation test was carried out to identify
parameters for equilibrium response. In theory, the
equilibrium response is obtained when a material is loaded at
an infinitely slow rate. However, in case of highly viscous
materials like elastomers, it is quite difficult to specify a
loading rate that will be slow enough to rule out the viscosity
effects. Thus it needs a number of uniaxial test trials. To
address this problem, we employ multi-step relaxation test
over the considered stretch range. In the present study,
Specimen-I and Specimen-II were tested up to 0.55 and 0.5
stretch levels respectively. Figure 5 presents the applied
stretch and obtained stress histories of the tests. It is seen that
at the end of each relaxation interval of 10 min duration, each
stress history converges to an almost constant state in both
specimens. Although an equilibrium state can bé achieved
only in an asymptotic sense, the stress states indicate the
neighborhood of the equilibrium states. We regard these
stress states as the equilibrium states at respective stretch
levels.
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Figure 5. Applied stretch history and stretch-stress
response observed in multi-step relaxation test. (a)
Specimen-I (b) Specimen-II.

2.5 Monotonic compression test

The instantaneous elastic response of a solid is ideally
obtained when the material is loaded at infinitely fast rate.
From an experimental point of view, however, there is a finite
maximum value of stroke rate for any displacement
controlled loading device. Although, the use of a smaller
specimen dimension in the loading direction can increase the
loading rate on a specimen, the reduced aspect ratio of the
specimen increases the boundary effects on the other turn. In
this context, to find a method for estimating the instantaneous
response, a series of monotonic compression tests was
carried out. The tests were carried out at different constant
strain-rates up to 0.5 stretch level. In the test series, a number
of constant strain-rate cases within the range of 0.001/s to
0.96/s were considered.
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Figure 6. Comparison of monotonic compression test
stretch-stress responses at different strain rates along with
the equilibrium locus. (a) Specimen-I (b) Specimen-II.
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Figure 6 shows the rate-dependent stress-stretch
responses observed in six strain rate cases for Specimen-I and
four strain rate cases for Specimen-II. A comparison of the
curves of different strain rate cases in each specimen shows
that with increasing strain-rate, the stresses increase due to
viscosity effect. At higher strain rates, however, a
diminishing trend in the increase of stress response was
observed indicating the approach of an instantaneous state in
both specimens. In this context, the stress response of
Specimen-I obtained at and over 0.47/s strain rate can be
considered as the neighborhood of instantaneous state
boundary of the viscous domain (Fig. 1). In Specimen-II, the
corresponding strain rate is 0.072/s.

To get a clearer picture of the viscous domain, the
equilibrium loci obtained from Section 2.4 were compared
here with different strain rate cases. The locus plotted in Fig.

6 represents the equilibrium state boundary of the viscous

domain (Fig. 1) for each material. Comparisons between Figs.

6a and 6b shows that the equilibrium loci estimated for both
specimens are comparable. However, the stress response of
Specimen-II at faster strain rates is much lower than that of
Specimen-1. This results in a much smaller viscous domain
for Specimen-II characterizing low viscosity.
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Figure 7. Stress history obtained from simple relaxation
test. (a) Specimen-I (b) Specimen-IL

2.6 Simple relaxation test

The multi-step relaxation test and monotonic
compression tests described in Sections 2.4 and 2.5 have
made it possible to estimate the instantaneous and

equilibrium responses thus defining the boundary of the
viscous domain. The remaining problem is in regard to the
characterization of viscosity property. To this end, we carried
out a series of simple relaxation tests at different stretch
levels. In this course, similar to the multi-step relaxation tests
(Fig. 5), a strain rate of 0.5/s followed by a hold time of 10
min was used in all the tests described in this section.

Figure 7 shows the stress histories obtained from the tests
on Specimen-I at 0.7 stretch level and Specimen-II at 0.5
stretch level. In Specimen-I, a rapid stress relaxation feature
is displayed in the first 2 min. of hold time after which it
approaches asymptotically towards an equilibrium state
within next 2 min. The total magnitude of stress relaxation of
Specimen-1I was found much lower than that of the other
specimen. This observation conforms to the viscous domain
characteristics of the material as mentioned in Section 2.5. In
both specimens, however, the stress relaxation characteristic
was not found to vary with the change of stretch levels of the
simple relaxation tests.

3. Constitutive model

The experimental observation summarized in Section 2
revealed the strain rate dependency of the materials.
Typically the hyperelasticity laws are used to model
elastomer response at a particular strain rate”. However, in
order to model the rate dependency, the hyperelasticity laws
are required to be combined with a rate-dependent model
through a finite deformation model structure. Such model
structure  contains the parameters representing the
equilibrium and instantaneous states, and viscosity of the
material. The following sections summarize the aspects of
model configuration, the approaches for hyperelasticity
modeling, and incorporation of the chosen hyperelasticity
law into the finite deformation rate-dependent model.

3.1 Model configuration

A three-parameter parallel model as illustrated in Fig. 8
was considered. Although the linear spring elements are used
in the standard three-parameter model for linear
viscoelasticity, in the present three-parameter model, a
hyperelasticity model was employed to represent the
nonlinear elastic behavior of each spring element. For the
dash—pot element, we assume the conventional linear
viscosity for simplicity. In this model, the hyperelastic
element A represents the equilibrium response. The other
branch consisting of hyperelastic element B and viscous
dash-pot C represents the over-stress feature resulting from
the rate-dependent effect. The total strain € was decomposed
into elastic strain e, and inelastic strain e; components.
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Figure 8. Three-parameter parallel model.
3.2 Hyperelasticity modeling

In hyperelasticity, under the assumption of isotropy, the
stress-strain relationship is derived from a strain energy
density function W® expressed either in terms of the strain
invarients”'®  or stretches'™'®.  The
strain-invariant-based models are easy to implement in a
mathematical formulation, while the stretch based models are
more  flexible

principal

in representing the experimental data
partic‘ularly at higher strain levels. However, to follow a
simpler computational approach, a strain-invariant-based
hyperelasticity model was chosen in this study. In this
approach, the three strain invariants (i.e. I, TI, II) are
expressed as:

Yt
1]

uB = }LIZ +7L22 +}L32 ,
1
o = E{“’B)Z - “(BB)} = AP+ AP+ ()t (D)

I = detB = (MAh3)2,

where A, Ay, Azare the principal stretches; left
Cauchy-Green deformation tensor, B=FF"; F=deformation
gradient tensor.

Among the strain invariant based models, Mooney-Rivlin
model®'? is the most common one but it does not perform
well at higher strain levels. To overcome this problem, a
higher order function of I as proposed by Yamashita &
Kawabata'® was incorporated in this study for modeling the
responses at higher strain levels. The strain energy density

function of the present model is expressed as,

_ B _ Cs o LN+l
WD) = Cs(I-3)+Cr(II 3)+———N+1(I 3) , (2

where C;, C,, C;, N are non-negative material constants. Here,
with the parameter C;=N=0 the function is reduced to the
original Mooney-Rivlin model.

In case of uniaxial loading, under the assumption of
incompressibility, the third strain invariant, III reduces to
unity giving A= A;=(A,)” =(A)"". In such a case, the Cauchy
stress in the loading direction (i.e.. o) for this model is
expressed as:

1 1 2 2 N
= 202 —)[Cs +—Cy +C3(0* +=-3)N]. 3
()] ( )\)[ 5+>L 2 +C3( y )] 3)

It becomes evident from equation (3) that the Cauchy stress
can be decomposed into three terms associated with Cs, C,
and C; coefficients. In order to clarify the individual
contribution of these terms on the Cauchy stress over the
tension and compression regimes, the component-wise
stress-stretch functions are plotted in Fig. 9. Among these
three terms, the C, term of the original Mooney-Rivlin Model
represents the high initial stiffness of the hyperelastic
response observed at low tensile strains (Fig. 9a). However,
on the compression side, this term can not represent such
response as observed in our experiments (Fig. 6). The Cs term
represents the large extension feature of a hyperelastic
response in tension and compression regime as well (Fig. 9a).
The hardening feature of the rubber molecular network'”
follows the large extension feature (Fig. 6). The C; term with
an exponential term N represents this high strain hardening
feature (Fig. 9b). However, the effect of exponent value N on
the Cauchy stress is not much sensitive. This feature of the
Cauchy stress in the hyperelasticity model will be discussed
once again in Section 4 in connection with the parameter
identification scheme.
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Figure 9. Cauchy stress function components. (a) C, and
C; components (b) C; component.
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3.3 Rate-dependency modeling

The stress and strain components of the three-parameter
parallel model presented in Fig. 8 were converted into a finite
deformation model following the formulation of Huber &
Tsakmakis”. To do this, first we modeled each spring
element (Fig. 8) in terms of hyperelasticity law and expressed
the equilibrium stress, T® and overstress, TOB a5 follows:

(E)
T™® = BV; , for spring A (4a)
2
(OE)
TO® E\ZT , for spring B (4b)
[

The finite deformation model was formulated under the
framework of multiplicative decomposition of the
deformation gradient tensor, F. The total deformation
gradient tensor is decomposed into F = F.F;; where F, and F;
are the deformation gradients associated with e, and ¢;
respectively. Here the F;
intermediate equilibrium configuration. Such configuration
is resulted when the stress is unloaded at an infinitely fast rate
to an equilibrium state, provided the value of F; is fixed
during unloading process. Such unloading process is local,
hence, neither F, nor F; components need to satisfy global
compatibility conditions. This leads the expression of the
Cauchy stress tensor T and rate of left Cauchy-Green

component introduces an

deformation tensor B as follows:

T = -p1 + Tg (5a)

Tg = T + TP (5b)
Jw® ®

P = 2 B - 2V g (5¢)
alg ally
aw B awE

Téoxs) = 22 g, B, (5d)
alg, dllg,

. 2

Be = B.LT + LB, - HBC(TE—T;:E))D (5¢)

where p is the hydrostatic pressure of T and sub-script ‘E’
denotes the extra part of corresponding stress tensor. 1 is the
identity tensor. The subscript ‘e’ denotes the quantities
related to F.. L is the velocity gradient tensor. Superscript ‘D’
denotes the deviatoric part of stress. 1 is the viscosity of the
dash-pot. In deriving the explicit expressions for T and rate
of B,, the hyperelasticity function presented in equation (2)
was used together with equation (5). Equation (6) presents
the final form of the T and the rate of B,.

T = -pl + 2CFB+2cE 5 -3 B-2cPB7 +
(OE) i
2B, +2¢PP (15 -3 B, -2¢PPB;! (6a)

Be = BL' + LB, -

4 D
HB‘{ CgOE)Be +c§°‘_3)(IB _pNe® B, _C(205>Be—1] (6b)

The material parameters of the proposed model expressed
in equation (6) are summarized in Table 1.

Table 1. Material parameters

Response components ~ Material Parameters

CS(E) C3(E) CZ(E) N(E)
CS(OE) C3(OE) Cz(OE)

Equilibrium stress
Overstress

Viscosity n

4. Parameter identification

On the basis of experimental observations and the
constitutive model described in Section 2 and Section 3
respectively, the following sections present the parameter
determination procedure for representing the equilibrium
response, the instantaneous response, and the viscosity.

4.1 Equilibrium response

The coefficients of the hyperelasticity model for the
equilibrium locus obtained from the multi-step relaxation
tests (Sec. 2.4) were determined by the least square method.
In this work, we performed our experiments in the
compression regime where the C, term is ineffective in
representing the experimentally observed high initial
stiffness as discussed in Section 3.2. Hence to avoid getting
negative values in the least square procedure, C, was
assigned to zero. The values of the parameters are listed in
Tables 2 and 3 for Specimen-I and 11, respectively.

Table 2. Elastic material parameters (Specimen-I)

Cs G, G, N
MPa MPa MPa
Equilibrium 0.48 0.015 0.00 3.30
Instantaneous  0.85 0.120 0.00 3.30

Responses

Table 3. Elastic material parameters (Specimen-II)
Responses Cs Cs G, N
MPa MPa MPa
Equilibrium 0.44 0.001 0.00 3.50
Instantaneous  0.55 0.004 0.00 3.50

4.2 Instantaneous response

" The monotonic compression tests presented in Section
2.5 displayed a diminishing trend in the increase of the stress
response at higher strain rates indicating the approach of the
instantaneous state. Interestingly, the overall stress-stretch
response at each strain rate has a characteristic ‘S’ shaped
curve, which can be described by the hyperelasticity model.
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On the basis of this feature, the constants, i.e. Cs and C; were
determined for each ‘monotonic compression test with
different strain rates ranging from 0.001/s to 0.96/s. In the
Cauchy stress-stretch relation of the hyperelasticity model
(eq. (3)), the contribution from the third term is related to two
parameters, i.e. C; and N. However, the plot of this term as
presented in Fig. 9b clarifies weak sensitivity of N value to
the relation. On this basis, a constant value of N as
determined from the equilibrium locus of each material was
used for determining C; parameter. The Cs and C; parameters
determined by this way are plotted respectively in Figs. 10
and 11 against the corresponding strain rate values for both
specimens.
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Figure 10. Best-fit Cs values for monotonic compression
tests with different strain rates.
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Figure 11. Best-fit C; values for monotonic compression
tests with different strain rates.

It is interesting to note that the values of Cs and C;
parameters (Figs. 10 and 11) follow an asymptotic trend with
the increase of applied strain rate. This must be due to
approach of the instantaneous state. In case of Specimen-I
such feature is noticed over a strain rate of 0.25/s, while in
Specimen-II the corresponding strain rate is 0.1/s. The
parameters for the instantaneous response are estimated from
this asymptotic trend within finite strain rate region. The
values obtained from the highest strain rate case in each
specimen and denoted by X; and X, (Figs. 10 and 11) were
taken for representing the instantaneous response. The values
have been presented in Tables 2 and 3. The subtraction of the

values of Cs, C;, C, from the instantaneous to the equilibrium
state gives the parameter values for the overstress response
mentioned in Table 1.

4.3 Viscosity

After determining the elastic parameters for both
instantaneous and equilibrium responses, the only remaining
unknown one is the viscosity, n (Fig. 8). Here, simple
relaxation test data was used to obtain 1) through simulation
trials of the rate-dependent hyperelasticity model (Sec. 3.3)
by comparing the computed results with experimental data.

For the relaxation test with a stretch at 0.7 in Specimen-I,
n=1.125 MPa-s was found to represent the relaxation feature
adequately (Fig. 12a). In Specimen-II, the corresponding
value was 3.50 MPa-s (Fig. 12b).
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Figure 12. Estimation of viscosity parameter by simulating
the simple relaxation test result; (-) Numerical simulation,
(e) Experiment. (a) Specimen-I, (b) Specimen-IL

5. Verification and discussion

The determination of the viscosity parameter presented in
Section 4.3 completes the parameter identification scheme.
At this stage, the parameters determined in Section 4 were
used in the constitutive model to verify the adequacy of the
proposed scheme. In this context, Section 5.1 compares the
simulation results with monotonic compression test data. In-
addition, Section 5.2 presents the results from a sensitivity
study and discusses the asymptotic convergence -of the
instantaneous response with increasing strain rate observed
in Section 4.2.
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5.1 Comparison of simulation results with monotonic 0
compression tests § 05
The elastic and viscous parameters determined in Section ;Unj -1
4 were used in the constitutive model presented in Section 3 g s
to simulate the monotonic compression test at varied strain FEE
rates. Figs. 13 and 14 show the simulation results in 5 -2 Strain rate = 0.001/s
. . . . © !
comparison with experimental data for both specimens, ;
where a good conformity is observed in all the cases. 0.5 0.6 0.7 0.8 0.9 1
However, in case of Specimen-I, as expected, the
representation of stress-stretch response at low strain levels is
a bit poor (Fig. 13) particularly for lower strain rate cases due 0
to the limitation of hyperelastic model in that region (Fig. 9a). = 0.5
oo,
=
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8 35 Strain rate = 0.225/s Figure '14. Nume.rlcal 51mu.lat10n of mqnotomc
compression test at different strain rates for Specimen-II;
05 06 0.7 0.8 0.9 1 (-) Numerical simulation, (e) Experiment.
Stretch
In Specimen-II, the simulation result at 0.001/s strain rate
0 is slightly poorer than other faster strain rate cases (Fig. 14).
o~ — Such performance might be related to the limitation of
o .
& present viscosity modeling where only one relaxation rate can
;; be modeled in contrast to the experimental observation
§ presented in Fig. 7b where the co-existence of two relaxation
prs rates was detected (Section 2.6). In this case, the viscosity
= parameter was estimated in Section 4.3 to represent the faster
o] . .
= relaxation rate that completes the major part of total stress
© 351 Strain rate = 0.47/s relaxation within first 10 sec of the stress history (Fig. 12b).
0.5 0.6 0.7 0.8 0.9 1 In contrast to this, the time history duration of monotonic
Stretch compression test at 0.001/s up to 0.5 stretch level is 500 sec.
i . . . . This is much longer than the duration of relaxation stress
Figure 13. Numerical simulation of monotonic

compression test at different strain rates for Specimen-I
(-) Numerical simulation, (e) Experiment.

history (10 sec) modeled by that single viscosity parameter.
However, in Specimen-I, the effect of multiple relaxation
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rates on the simulation result is not so prominent. Apart from
these aspects, in a general trend, the numerical results slightly
underestimated the response in all strain rate cases for both
specimens.

5.2 Sensitivity study

In determining elastic parameters, the proposed scheme
requires only one test for equilibrium response in contrast to
the case of instantaneous response, where the required
number of experiment is a bit large. In addition, a large
number of monotonic compression experiments from slower
to faster rates were carried out in this study to clarify the
convergence of the hyperelasticity parameters to the
asymptotic value with increasing strain rate. However, the
values of Cs and C; determined at different strain rates (Figs.
10 and 11) indicate the possibility of reducing the strain rate
in approximating instantaneous response for practical
application. Hence, at this stage, the effect of using
" instantaneous state parameter values estimated from different
but slower strain rate cases on the simulation results was
studied through a sensitivity study. The study was carried out
with a view to checking the robustness of the proposed
scheme and thereby to investigate the possibility of using a
reduced strain rate for estimating instantaneous response
parameters. To do this, in the case of Specimen-I, we take the
value of one of the parameters Cs and C; for the
instantaneous response from the strain rate case of Y, (Figs.
10 and 11) while taking the other parameter from the X, case.
The resulting errors in stress prediction occurring due to this
parametric variation are presented as a function of stretch in
Fig. 15 where,

Ox - Oy
Ox

Error (%) = x 100 7N

Simulation of monotonic compression tests at three different
strain rates were considered. In case of Specimen-I1, a similar
study was carried out for X; and Y, cases (Figs. 10 and 11)
and the corresponding results are plotted in Fig. 16.

In Specimen-1, the considered reduction of strain rate
to Y, is 51% while in Specimen-II, the
corresponding shift is 31%. In contrast to such large

from X,

reduction of strain rate in selecting instantaneous parameters,
the errors in stress prediction remain within 2% in both
specimens as revealed from Figs. 15 and 16. This confirms
the robustness of the proposed instantaneous state
identification scheme and opens the scope of reducing the
strain rate for practical application. A detail look over the
Figs. 15 and 16 shows that the effect of Cs parameter
variation was dominant over the entire stretch range in
contrast to that of the C; parameter that was only visible at
high strain levels. In general, a reverse trend was also

observed between these two effects. Such observations can
readily be explained from the role of each of these parameters
at different stretch levels as presented in Fig. 9 and discussed
in Section 3.2. Apart from these aspects, the effect of strain
rate on C; parameter was found to be insignificant.
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Figure 15. Effect of instantaneous response parameter
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variation on stress in monotonic compression test for
Specimen-1; (a) Cs parameter, (b) C; parameter.
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6. Conclusions and further remarks

1) - The equilibrium response of elastomers can be
approximated from a multi-step relaxation test.

2) The instantaneous response can be estimated from a
series of constant-rate monotonic compression tests at
different strain rates.

3) The hyperelasticity model can be used to find out
the parameters for the equilibrium and instantaneous
responses from the tests mentioned in (1) and (2). In this
connection, incorporation of an exponential term as proposed
by Yamashita & Kawabata'¥ in the strain energy density
formulation was found to improve the stress-stretch
representation at higher stretch level.

4) When the elastic parameters of the material are
known, the rate-dependent finite deformation hyperelasticity
model can be used to find out the viscosity parameter by
comparing the simple relaxation test data.

5) The comparison of numerical results with
monotonic compression test results for different strain rate
_cases has shown the adequacy of the proposed procedure.
However, in case of modeling any elastomer with more than
one prominent relaxation rates, the numerical model
presented in this paper needs some improvement.

6) A sensitivity study has shown the possibility of
reducing the strain rate of monotonic compression
experiments for estimating the instantaneous response for
practical applications. This also displayed the robustness of
the proposed procedure.

7) In this paper, we have investigated the nonlinear
viscoelastic response of elastomers in compression side and
proposed an experimental scheme to identify the parameters
in a physically meaningful way using a rate-dependent
constitutive model. Conceptually, the proposed experimental
outline and subsequent parameter identification procedure
are applicable in predicting the viscoelastic response of
elastomers in tension regime as well. To this end, it is of the
coming up interest of the authors to check the performance of
the scheme on tension side.
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